首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose an efficient scheme to generate a macroscopical quantum superposition state with a cavity optomechanical system, which is composed of a quantum Rabi-Stark model coupling to a mechanical oscillator. In a low-energy subspace of the Rabi-Stark model, the dressed states and then the effective Hamiltonian of the system are given. Due to the coupling of the mechanical oscillator and the atom-cavity system, if the initial state of the atom-cavity system is one of the dressed states, the mechanical oscillator will evolve into a corresponding coherent state. Thus, if the initial state of the atom-cavity system is a superposition of two dressed states, a coherent state superposition of the mechanical oscillator can be generated. The quantum coherence and their distinguishable properties of the two coherent states are exhibited by Wigner distribution. We show that the Stark term can enhance significantly the feasibility and quantum coherence of the generated macroscopic quantum superposition state of the oscillator.  相似文献   

2.
安雪碧  银振强  韩正甫 《物理学报》2015,64(14):140303-140303
宏观-微观纠缠最早起源于“薛定谔的猫”思想实验, 是指在宏观体系与微观体系之间建立量子纠缠. 实现宏观-微观纠缠可以利用多种物理体系来完成, 本文重点介绍了在光学体系中制备和检验宏观-微观纠缠的发展过程. 从最初的受激辐射单光子量子克隆到光学参量放大, 再到相空间的位移操作, 实验上制备宏观-微观纠缠的方法取得了长足的进步. 利用非线性光学参量放大过程制备的宏观-微观纠缠的光子数可以达到104量级, 人眼已经可以观察到, 因此使用人眼作为探测器来检验宏观-微观纠缠的实验开始出现. 但随后人们意识到, 粗精度的光子数探测器, 例如人眼, 无法严格判定宏观-微观纠缠的存在. 为了解决这个难题, 提出了一种巧妙的方法, 即在制备宏-微观纠缠后, 利用局域操作过程将宏观态再变为微观态, 通过判定微观纠缠存在的方法来判定宏微观纠缠的存在. 之后相空间的位移操作方法将宏观态的粒子数提高到108, 并且实现了纠缠的严格检验. 利用光机械实现宏观-微观纠缠的方案也被提出. 由于量子密钥分配中纠缠是必要条件, 而宏观-微观纠缠态光子数较多这一优势可能会对量子密钥分配的传输距离有所提高. 本文介绍了利用相位纠缠的相干态来进行量子秘钥分配的方案, 探讨了利用宏观-微观纠缠实现量子密钥分配的可能性.  相似文献   

3.
The notion that decoherence rapidly reduces a superposition state to an incoherent mixture implicitly adopts a special representation, namely, the representation of preferred (pointer) states (PS). For weak or strong system-envrionment interaction, the behavior of PS is well known. Via a simple dynamical model that simulates a two-level system interacting with few other degrees of freedom as its environment, it is shown that even for intermediate system-environment coupling, approximate PS may still emerge from the coherent quantum dynamics of the whole system in the absence of any thermal averaging. The found PS can also continuously deform to expected limits for weak or strong system-environment coupling. Computational results are also qualitatively explained. The findings should be useful towards further understanding of decoherence and quantum thermalization processes.  相似文献   

4.
Deepak Kumar 《Pramana》1998,51(5):567-575
The problem of measurement in Quantum Mechanics will be briefly reviewed. Since the measurement process involves a macroscopic apparatus, the attention is focussed on the dynamics of a pointer-like variable of the apparatus when it interacts with a quantum system. It is argued that since the measurement process requires an apparent collapse of the wave function in a certain basis, and collapse is an irreversible process, understanding of irreversibility in a quantum macroscopic system is crucial. The chief characteristics of an apparatus that are important in understanding measurement process are (a) its closely spaced energy levels and (b) its interaction with environment. The coupling with the environment drives the density matrix of the apparatus to diagonal form, but to have persistent correlations between system and apparatus states, it seems necessary to have a pointer variable that has a classical limit  相似文献   

5.
The paper shows that the Wigner distribution function of quantum optical coherent states, or of a superposition of such states, can be produced and measured with a classical optical set-up using classical coherent light fields. This measurement cannot be done directly in quantum optics since the quantum phase space variables correspond to non-commuting operators. As an example, the Wigner distribution function of Schrödinger cat states of light has been measured. It is also shown that the possibility of measuring the Wigner distribution function of quantum coherent states with classical coherent fields is unique in the sense that it cannot be extended to other quantum states, not even to the incoherent limit of the superposition of coherent states.  相似文献   

6.
《中国物理 B》2021,30(9):90304-090304
We investigate the advantage of coherent superposition of two different coded channels in quantum metrology. In a continuous variable system, we show that the Heisenberg limit 1/N can be beaten by the coherent superposition without the help of indefinite causal order. And in parameter estimation, we demonstrate that the strategy with the coherent superposition can perform better than the strategy with quantum SWITCH which can generate indefinite causal order. We analytically obtain the general form of estimation precision in terms of the quantum Fisher information and further prove that the nonlinear Hamiltonian can improve the estimation precision and make the measurement uncertainty scale as 1/Nm for m ≥ 2. Our results can help to construct a high-precision measurement equipment, which can be applied to the detection of coupling strength and the test of time dilation and the modification of the canonical commutation relation.  相似文献   

7.
We study a variant of Davies' model of heat conduction, consisting of a chain of (classical or quantum) harmonic oscillators, whose ends are coupled to thermal reservoirs at different temperatures, and where neighboring oscillators interact via intermediate reservoirs. In the weak coupling limit, we show that a unique stationary state exists, and that a discretized heat equation holds. We give an explicit expression of the stationary state in the case of two classical oscillators. The heat equation is obtained in the hydrodynamic limit, and it is proved that it completely describes the macroscopic behavior of the model.  相似文献   

8.
Wen-Li Yu 《中国物理 B》2023,32(1):10302-010302
An open quantum battery (QB) model of a single qubit system charging in a coherent auxiliary bath (CAB) consisting of a series of independent coherent ancillae is considered. According to the collision charging protocol we derive a quantum master equation and obtain the analytical solution of QB in a steady state. We find that the full charging capacity (or the maximal extractable work (MEW)) of QB, in the weak QB-ancilla coupling limit, is positively correlated with the coherence magnitude of ancilla. Combining with the numerical simulations we compare with the charging properties of QB at finite coupling strength, such as the MEW, average charging power and the charging efficiency, when considering the bath to be a thermal auxiliary bath (TAB) and a CAB, respectively. We find that when the QB with CAB, in the weak coupling regime, is in fully charging, both its capacity and charging efficiency can go beyond its classical counterpart, and they increase with the increase of coherence magnitude of ancilla. In addition, the MEW of QB in the regime of relative strong coupling and strong coherent magnitude shows the oscillatory behavior with the charging time increasing, and the first peak value can even be larger than the full charging MEW of QB. This also leads to a much larger average charging power than that of QB with TAB in a short-time charging process. These features suggest that with the help of quantum coherence of CAB it becomes feasible to switch the charging schemes between the long-time slow charging protocol with large capacity and high efficiency and the short-time rapid charging protocol with highly charging power only by adjusting the coupling strength of QB-ancilla. This work clearly demonstrates that the quantum coherence of bath can not only serve as the role of "fuel" of QB to be utilized to improve the QB's charging performance but also provide an alternative way to integrate the different charging protocols into a single QB.  相似文献   

9.
We discuss an optimal modular-value-based measurement with a spin coherent pointer: A quantum system is exposed to a field whose strength is to be estimated through its modular value. We evaluate the quantum Fisher information as a figure of merit. We found that the modular-value-based measurement can reach the same ultimate precision limit of the estimation as those of measurements without postselections. The quantum Fisher information can be increased when the dimension of the pointer state increases. We also consider the pointer under a phase-flip error. Our study should motivate researchers to apply the modular-value-based measurements for quantum metrology.  相似文献   

10.
There are four reasons why our present knowledge and understanding of quantum mechanics can be regarded as incomplete. (1) The principle of linear superposition has not been experimentally tested for position eigenstates of objects having more than about a thousand atoms. (2) There is no universally agreed upon explanation for the process of quantum measurement. (3) There is no universally agreed upon explanation for the observed fact that macroscopic objects are not found in superposition of position eigenstates. (4) Most importantly, the concept of time is classical and hence external to quantum mechanics: there should exist an equivalent reformulation of the theory which does not refer to an external classical time. In this paper we argue that such a reformulation is the limiting case of a nonlinear quantum theory, with the nonlinearity becoming important at the Planck mass scale. Such a nonlinearity can provide insights into the aforesaid problems. We use a physically motivated model for a nonlinear Schr?dinger equation to show that nonlinearity can help in understanding quantum measurement. We also show that while the principle of linear superposition holds to a very high accuracy for atomic systems, the lifetime of a quantum superposition becomes progressively smaller, as one goes from microscopic to macroscopic objects. This can explain the observed absence of position superpositions in macroscopic objects (lifetime is too small). It also suggests that ongoing laboratory experiments may be able to detect the finite superposition lifetime for mesoscopic objects in the near future.  相似文献   

11.
The quantum harmonic oscillator can be considered as a composite system of indistinguishable Bose-Einstein symmetric two-level-systems (quanta). In analogy to the classical Poisson limit theorem, we show that a coherent state is the limit of a sequence of homogeneous product states (coherent spin states) and discuss statistical properties of the quanta in classical and nonclassical states.  相似文献   

12.
System-environment interaction may introduce dynamic destruction of quantum coherence, resulting in a special representation named as pointer states. In this work, pointer states of an open electronic system are studied. The decoherence effect is taken into account through two different ways which are Büttiker's virtual probe model and strong electron-phonon interaction in the polaron picture. The pointer states of the system with different coupling strength are investigated. The pointer states are identified by tracking the eigenstates of the density matrix in real-time propagation. It is found that the pointer states can emerge for arbitrary coupling strength. And the pointer states deform to the eigenstates of the system in the strong coupling limit, which indicates the vanish of quantumness in the strong coupling limit.  相似文献   

13.
We consider the Dicke Hamiltonian, a simple quantum-optical model which exhibits a zero-temperature quantum phase transition. We present numerical results demonstrating that at this transition the system changes from being quasi-integrable to quantum chaotic. By deriving an exact solution in the thermodynamic limit we relate this phenomenon to a localization-delocalization transition in which a macroscopic superposition is generated. We also describe the classical analogs of this behavior.  相似文献   

14.
The availability of Bose-Einstein condensates as mesoscopic or macroscopic quantum objects has aroused new interest in the possibility of making and detecting coherent superpositions involving many atoms. We consider the important problem of distinguishing whether a coherent superposition or a statistical mixture is generated by a given experimental procedure, using the specific example of a double-well condensate. In this system, such a superposition state can be generated by using a Feshbach resonance to tune the inter-atomic interactions. We find that unambiguously distinguishing even a perfect ‘NOON’ state from a statistical mixture using standard detection methods will present experimental difficulties.  相似文献   

15.
The process of simultaneous absorption of three photons in a medium subjected to a three-photon parametric perturbation is considered. It is shown that in such a medium one can observe the formation of the radiation field states, which are the quantum superposition of three coherent components. One-photon and twophoton absorption processes in the medium also destroy the interference between the components of the superposition state. The states being formed are investigated in both the temporal development (numerically) and the stationary limit (numerically and analytically); the Wigner functions, as well as the quantum entropy, are calculated for a whole series of initial states. It is shown that depending on the initial state of the radiation field, the interference between the three-component superposition states being formed can lead, for example, to the almost total localization of the system in a two-component state or to the destruction of the interference between different coherent components.  相似文献   

16.
The relation between classical and quantum mechanical integrability is investigated for a boson mode coupled to a two-level system. Different semi-classical approximations of this system are considered which are obtained by (i) factorization of expectation values of the two-state variable and the boson, (ii) making a WKB-type approximation, (iii) replacing the boson by a classical field of constant amplitude and fixed frequency and (iv) putting the boson into a self-consistent coherent state. The results vary considerably and include cases of non-integrable and integrable classical dynamics. Quantum mechanically the system is found to satisfy a criterion of quantum mechanical integrability, which we formulate, but the separated Hamiltonian of the boson alone does not have a well-defined classical limit. Numerical results for the energy spectrum and expectation values are obtained, which show a high degree of regularity but also display overlapping avoided crossings usually associated with non-integrable Hamiltonians. The exact dynamics of the occupation probabilities of the two levels is also analysed numerically. The dependence of quantum mechanical recurrence effects (in quantum optics known as revivals) on coupling strength, frequency detuning and initial conditions is studied. The revivals are found to disappear in the case of strong coupling. The Fourier spectra of the dynamical expectation values are also calculated  相似文献   

17.
In quantum mechanics, the expectation value of an operator can be measured by using the projective measurement, ifthe coupling between the measured system and pointer is strong enough. However in the weak coupling regime, the pointercan not show all the eigenvalue of the physical quantity directly due to the overlapping among the pointer states, whichmakes the measurement of the expectation value difficult. In this paper, we propose an expectation value measurementmethod in the weak coupling regime inspired by the weak measurement scheme. Compared to the projective measurement,our scheme has two obvious advantages. Experimentally we use the internal state and motional state of a single trapped40Ca+ to establish the measurement scheme and realize the proof of principle demonstration of the scheme.  相似文献   

18.
We present a Hamiltonian that can be used for amplifying the signal from a quantum state, enabling the measurement of a macroscopic observable to determine the state of a single spin. We prove a general mapping between this Hamiltonian and an exchange Hamiltonian for arbitrary coupling strengths and local magnetic fields. This facilitates the use of existing schemes for perfect state transfer to give perfect amplification. We further prove a link between the evolution of this fixed Hamiltonian and classical cellular automata, thereby unifying previous approaches to this amplification task. Finally, we show how to use the new Hamiltonian for perfect state transfer in the scenario where total spin is not conserved during the evolution, and demonstrate that this yields a significantly different response in the presence of decoherence.  相似文献   

19.
A mesoscopic Josephson junction with dissipation is considered. Usually the dissipation in the system is described as a consequence of its coupling to a reservoir. By solving the master equation we show that the state of the junction can evolve in a quantum superposition of two coherent states even when the dissipation is present.  相似文献   

20.
A mesoscopic Josephson junction with dissipation is considered. Usually the dissipation in the system is described as a consequence of its coupling to a reservoir. By solving the master equation we show that the state of the junction can evolve in a quantum superposition of two coherent states even when the dissipation is present.``  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号