首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Stable core‐shell latex was synthesized by semicontinuous seeded emulsion polymerization with core monomers consisting of styrene (St), butyl acrylate (BA), and shell monomers consisting of methyl methacrylate (MMA), eutyl acrylate (EA), and methacrylic acid (MAA). The effects of compound emulsifier amount, mass ratio of anionic/nonionic emulsifier, and initiator amount on latex performance were investigated. By particle size analysis and transmission electron microscopy (TEM) observation, results suggest that final latex particles have clearly core shell structures.  相似文献   

2.
The synthesis of functionalized submicrometer magnetic latex particles is described as obtained from a preformed magnetic emulsion composed of organic ferrofluid droplets dispersed in water. Composite (polystyrene/γ‐Fe2O3) particles were prepared according to a two‐step procedure including the swelling of ferrofluid droplets with styrene and a crosslinking agent (divinyl benzene) followed by seeded emulsion polymerization with either an oil‐soluble [2,2′‐azobis(2‐isobutyronitrile)] or water‐soluble (potassium persulfate) initiator. Depending on the polymerization conditions, various particle morphologies were obtained, ranging from asymmetric structures, for which the polymer phase was separated from the inorganic magnetic phase, to regular core–shell morphologies showing a homogeneous encapsulation of the magnetic pigment by a crosslinked polymeric shell. The magnetic latexes were extensively characterized to determine their colloidal and magnetic properties. The desired core–shell structure was efficiently achieved with a given styrene/divinyl benzene ratio, potassium persulfate as the initiator, and an amphiphilic functional copolymer as the ferrofluid droplet stabilizer. Under these conditions, ferrofluid droplets were successfully turned into superparamagnetic polystyrene latex particles, about 200 nm in size, containing a large amount of iron oxide (60 wt %) and bearing carboxylic surface charges. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2642–2656, 2006  相似文献   

3.
PSt种子与“花瓣”形PSt/PAN复合颗粒的制备   总被引:4,自引:0,他引:4  
以过硫酸钾为引发剂,在乙醇/水的混合介质中使苯乙烯进行无皂乳液聚合,得到了单分散亚微米级聚苯乙烯(PSt)微球.用扫描电子显微镜研究了引发剂浓度、单体浓度、反应温度和溶剂组成对PSt微球粒径的影响.结果表明,改变上述条件能明显影响其粒径.以所得单分散聚苯乙烯微球为种子,在丙烯酸单封端聚乙二醇大分子单体存在的条件下,使丙烯腈和少量苯乙烯进行新的无皂种子乳液聚合,在合适的条件下制得到了“花瓣”形的聚合物复合颗粒,为深入探讨这类特殊形态聚合物颗粒的形成机理提供了新的佐证.  相似文献   

4.
The objective of this work was to analyze the effects of the concentration and type of cationic surfactant on the kinetic features (instantaneous and overall conversions) and colloidal characteristics [mean particle diameter, particle size distribution (PSD), and surface charge density] in the semicontinuous seeded cationic emulsion polymerization of styrene. 2,2′‐Azobis(N,N′‐dimethyleneisobutyramidine)dihydrochloride was used as an initiator. The surfactants were dodecyltrimethylammonium bromide (DTAB) and hexadecyltrimethylammonium bromide (HDTAB). So that the evolution of some polymeric and colloidal characteristics of the synthesized latices could be followed, the overall and instantaneous conversions were defined and determined gravimetrically. The PSDs and average particle diameters were determined by transmission electron microscopy and photon correlation spectroscopy. The surface charge density was determined by conductimetric titration. The evolution of the instantaneous conversions, the total number of particles, and the PSDs of the different reactions were related to the nucleation, growth, and coagulation processes taking place in the semicontinuous seeded emulsion polymerizations. The PSDs obtained from the reactions carried out with the emulsifier DTAB, at a concentration equal to its critical micelle concentration (cmc) and at a concentration twice its cmc, presented more and smaller particles than those obtained by the addition of HDTAB to the polymerization recipe. At lower emulsifier concentrations equal to half of the cmc, the system had lower colloidal stability with DTAB. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2322–2334, 2003  相似文献   

5.
Monodisperse latex particles with different amounts of surface amino and amidine groups were synthesized by means of a semicontinuous seeded cationic emulsion polymerization of styrene and a cationic monomer. High partial overall conversions for styrene and limited ones for the cationic monomer were achieved. A reliable method for the quantification of surface amidine and amino groups was developed. It was found that the amount of surface amidine groups provided by the cationic initiator was higher when the amount of cationic monomer added increased. The value for the partition coefficient of the cationic monomer indicated that this polymerizes with the same probability in the water phase as in the particle. The colloidal stability, in terms of critical coagulation concentration, shows that the latexes would be useful as polymeric supports in immunoassays. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3878–3886, 2005  相似文献   

6.
<正>In this study,P(St-MAA) seed latex particles were first prepared via soap-free emulsion polymerization of styrene(St) and methacrylic acid(MAA),then the seed particles were allowed to swell with St at room temperature,and the P(St-MAA)/P(StNaSS) core/shell latex particles were then synthesized via seeded emulsion copolymerization of St and sodium styrene sulphonate (NaSS) using AIBN as initiator in the presence of N,N'-methylenebisacrylamide(BAA,water-soluble crosslinker).Results showed that the polymerization could be carried out smoothly when the ratio of BAA to total monomers was less than 3 mol%,the narrow dispersed P(St-MAA) seed particles with the diameter of 150 nm and the P(St-MAA)/P(St-NaSS) core/shell latexes with the particle size of about 200 nm were synthesized.When the 25/75 mole ratio of NaSS/(St + MAA) and 2 mol%of BAA were used in the seeded emulsion polymerization,the resulted P(St-MAA)/P(St-NaSS) latex product showed a low weight loss after water extraction,and the NaSS unit content in the whole particle and in the shell reached 11.7 mol%and 34.6 mol%,respectively.  相似文献   

7.
The seeded emulsion copolymerizations of styrene and acrylamide were carried out at 50°C using polystyrene latex particles as the seed and potassium persulfate as the initiator, respectively. It was found that the change in the number of seed particles initially charged causes a drastic change in the kinetic behavior of this seeded emulsion copolymerization system: when the number of seed particles initially charged was less than a certain critical value, both styrene and acrylamide started polymerization from the beginning of the reaction. However, when the number of seed particles was higher than this critical value, an apparent induction period suddenly emerged only for acrylamide polymerization, that is, acrylamide did not start polymerization until the styrene conversion exceeded around 75%, while the styrene polymerization started and continued very smoothly from the beginning of the reaction. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2689–2695, 1997  相似文献   

8.
The synthesis of core-shell type polystyrene monodisperse particles with surface acetal groups was carried out by a two-step emulsion polymerization process. In a first step, the core was synthesized by batch emulsion polymerization of styrene (St), and in the second step, the shell was polymerized by batch emulsion terpolymerization of styrene, methacrylic acid (MAA), and methacrylamidoacetaldehyde dimethyl acetal (MAAMA), using the seed obtained previously. With the aim of analyzing the effect of the thickness of the shell, the pH of the reaction medium and the weight ratio of the termonomers to prepare the shell, on the amount of the functionalized groups, several core-shell type latex particles were synthesized by two-step emulsion polymerization in a batch reactor. The latexes were characterized by TEM and conductimetric titration to obtain the particle size distribution and the amount of carboxyl and acetal groups on the surface, respectively. Looking for the applicability of the synthesized latexes in immunoassays, IgG a-CRP rabbit antibody was covalently bonded to the surface of the particles synthesized in neutral medium. The complex latex-protein was immunologically active against the CRP antigen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1605–1610, 1997  相似文献   

9.
Quaternization and dequaternization of tertiary amine compounds were employed to obtain thermally reversible ionene networks from aqueous colloidal polymer dispersions prepared via emulsion polymerization. Chlorine‐functionalized polymers prepared via the emulsion copolymerization of styrene (St), butylacrylate (BA), or both with chloromethylstyrene, and amino‐functionalized polymers prepared via the emulsion copolymerization of St, BA, or both with 2‐(dimethylamino)ethylacrylate or 4‐vinylpyridine, were reacted without polymer separation, with a ditertiaryamine crosslinker and a dihalide crosslinker, respectively, to obtain crosslinked polymers. Crosslinked polymers were also obtained via the reaction of a chlorine‐functionalized polymer dispersion with an amino‐functionalized polymer dispersion or via the drying of the polymer blend prepared from the two kinds of dispersions. Reactive solubility experiments, flowability investigations (by thermocompression at ca. 215 °C), IR, and 1H NMR analyses of the obtained crosslinked polymers indicated that the generated ionene bridges dequaternized on heating and requaternized on cooling. In comparison with solution crosslinking, no organic solvent was employed, and simple procedures were required for the preparation of the thermally reversible covalent crosslinked polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4373–4384, 2000  相似文献   

10.
In this research, submicron and carboxyl‐functionalized magnetic latex particles were elaborated by using seeded emulsion polymerization technique in presence of oil‐in‐water (o/w) magnetic emulsion as seed. The polymerization conditions were optimized in order to get well‐defined latex particles with magnetic core and polymer shell bearing carboxylic (–COOH) functionality. Starting from (o/w) magnetic emulsion as seed, synthesis process was performed by copolymerization of styrene (St) monomer with the cross‐linker divinylbenzene (DVB) in presence of 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as a carboxyl‐bearing initiator. The prepared magnetic latex particles were first characterized in terms of particle size, chemical composition, morphology, magnetic properties, magnetic content, and colloidal stability using various techniques, e.g. particle size analyzer using dynamic light scattering (DLS) technique, Fourier transform infrared, transmission electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, and zeta potential measurements as a function of pH of the dispersion media, respectively. The prepared magnetic latex particles were then used as second seed for further functionalization with methacrylic acid (MAA) in order to enhance carboxylic groups on the magnetic particle's surface. The results showed that final magnetic latex particles possessed spherical morphology with core‐shell structure and enriched carboxylic acid functionality. More importantly, they exhibited superparamagnetism with high magnetic content (58.42 wt%) and high colloidal stability, which considered as the main requirements for their application in the biomedical diagnostic domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Previous attempts to prepare monodisperse styrene/sodium styrene sulfonate copolymer latexes by batch, seeded, and semicontinuous emulsion polymerization were unsuccessful at high concentrations of the functional comonomer. Broad, and sometimes bimodal, size distributions, and large amounts of water soluble homopolymer were obtained. After removal of free monomer, solute and adsorbed homopolymer and copolymer, the overall incorporation of the functional comonomer was found to be low. To overcome these problems, a two stage “shot-growth” or in situ seeding technique was developed. A first stage copolymerization was carried out with a low concentration of sodium styrene sulfonate: the purpose of the functional comonomer was to enhance the stability and regulate the size of the seed particles. When this reaction had reached high conversion (> 90%), a second stage monomer mixture was added. The ratio of styrene to sodium styrene sulfonate in this mixture determined the final surface charge density. The mechanism by which the NaSS is incorporated in the polymer particles is considered to be by solution copolymerization with solute styrene monomer to form surface active oligoradicals. These radicals adsorb on the particle surface, initiate polymerization and become inextricably bound, preventing their transfer back to the aqueous phase. By this means, it was possible to vary independently the particle size and surface charge density. High concentrations of functional comonomer could be polymerized without undue wastage (incorporations were only slightly less than 100%) or loss of monodispersity. In extreme cases, the area per functional group fell below the theoretical minimum, indicating considerable hydration of the surface layers.  相似文献   

12.
The nanoencapsulation of hydrophobic compounds by miniemulsion polymerization, a convenient one‐step encapsulation technique for nanocapsules, was investigated in terms of the thermodynamics and kinetics. The encapsulation was achieved by polymerization inducing phase separation within minidroplets dispersed in an aqueous phase. Thermodynamic factors (the level and type of surfactant, the level of the hydrophilic comonomer, and the monomer/paraffin ratio), kinetic factors (the level of the crosslinking agent or chain‐transfer agent), and nucleation modes were all found to have a great influence on the latex morphology. Specifically, for a styrene/paraffin system, there were optimum levels of sodium dodecyl sulfate (1.0 wt %), the hydrophilic comonomer (1.0 wt % methyl acrylate acid), and the chain‐transfer agent (0.2 wt % n‐dodecanethiol) for obtaining well‐defined nanocapsules of paraffin with a styrene/paraffin ratio of 1:1. When the styrene/paraffin ratio was reduced, however, it was more difficult to achieve a fully encapsulated particle morphology. Homogeneous nucleation could compete with encapsulation, and this resulted in a pure polymer particle and a half‐moon morphology. Conditions were also found under which complete encapsulation could be observed with a water‐soluble initiator (potassium persulfate), contrary to certain reports. Replacing potassium persulfate with an oil‐soluble initiator (2,2‐azobisisobutyronitrile) had little influence on the morphology under those conditions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2145–2154, 2004  相似文献   

13.
A variety of polymer microspheres were successfully synthesized by the surface‐initiated atom transfer radical polymerization (SI‐ATRP) of monomers by using monodisperse polymer microsphere having benzyl halide moiety as a multifunctional polymeric initiator. First, a series of monodisperse polymer microsphere having benzyl chloride with variable monomer ratio (P(St‐DVB‐VBC)) were synthesized by the precipitation polymerization of styrene (St), divinylbenzene (DVB), and 4‐vinylbenzyl chloride (VBC). Next, hairy polymer microspheres were synthesized by the surface‐initiated ATRP of various monomers with P(St‐DVB‐VBC) microsphere as a multifunctional polymeric initiator. The hair length determined by the SEC analysis of free polymer was increased with the increase of M/I. These hairy polymer microspheres were characterized by SEM, FT‐IR, and Cl content measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1296–1304  相似文献   

14.
Monodisperse polymer colloids with dimethyl and diethyl acetal functionalities were synthesized by a two‐step emulsion polymerization process. The first step consisted of a batch emulsion homopolymerization of styrene (St). The dimethyl and diethyl acetal functionalities were obtained by batch emulsion terpolymerization of St, methacrylic acid (MAA), and methacrylamidoacetaldehyde dimethyl acetal (MAAMA) or methacrylamidoacetaldehyde diethyl acetal (MAADA) in the second step, onto the previously formed polystyrene latex particles. The latexes were characterized by TEM and conductimetric titration, in order to obtain the particle size distribution and the amount of carboxyl and acetal groups on the surface, respectively. The chemical stability of the functionalized surface groups during the storage time was analyzed. The hydrophilic character of the surface of the polymer particles was determined by means of nonionic emulsifier titration. The colloidal stability of the synthesized latexes was studied by measuring the critical coagulation concentration (CCC) against KBr electrolyte, and the existence of a hairy layer on the surface of the latex particles was analyzed by measuring the hydrodynamic particle diameter at several electrolyte concentrations. The surface functionalized groups remained stable for 2 years. The relative hydrophilic character and the colloidal stability were affected by the pH of the medium. On the other hand, the higher the surface charge, the larger the thickness of the hairy layer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 501–511, 1999  相似文献   

15.
The synthesis of core-shell type polystyrene monodisperse particles with surface chloromethyl groups was carried out by a two-step emulsion polymerization process at different reaction temperatures. In a first step, the core was synthesized at 90 °C by means of batch emulsion polymerization of styrene (St), and in the second step, the shell was polymerized by batch emulsion copolymerization of St and chloromethylstyrene (CMS) using the seed obtained previously. With the aim of optimizing the production of these core-shell type polystyrene monodisperse particles with surface chloromethyl groups, the reaction temperature in the second step, the purification or not of the functionalized monomer (CMS), the amount and type of the redox initiator system used, and the type of addition of the initiator system to the reactor were studied.  相似文献   

16.
Changes in minimum film‐formation temperature (MFFT) during storage of latexes prepared from 91:9 wt % vinylidene chloride (VDC)‐methyl methacrylate (MMA) monomer mixture by seeded batch and seeded semicontinuous emulsion polymerization were investigated, with attention centered on polymer‐crystallization behavior during storage in the dispersed state. MFFT of latex prepared by the seeded batch process rose to 47 °C, whereas that of latex prepared by seeded semicontinuous process remained below 14 °C with storage at 20 °C for 12 weeks. Infrared absorption of latexes in the dispersed state and wide‐angle X‐ray diffraction of powder polymers obtained by lyophilization of fresh and stored latexes both indicated a much greater increase in polymer crystallinity during storage with latex prepared by the seeded batch process than with that prepared by the seeded semicontinuous process. Analysis of the copolymer composition drift calculated from reactivity ratios and 1H NMR analysis indicated a wider sequence distribution and longer VDC sequences in polymer prepared by the seeded batch process than in polymer prepared by the seeded semicontinuous process. This explained the higher rate of crystallization during storage with latex prepared by the seeded batch process than with that prepared by the seeded semicontinuous process. Rising crystallinity during storage in the dispersed state is believed to have caused the MFFT rise. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 939–947, 2002  相似文献   

17.
The synthesis of a new compound, 2‐[(4‐bromomethyl)phenyl]‐4,5‐dihydro‐4,4‐dimethyloxazole ( 1 ), and its utility in the synthesis of oxazoline‐functionalized polystyrene by atom transfer radical polymerization (ATRP) methods are described. Aromatic oxazolyl‐functionalized polymers were prepared by the ATRP of styrene, initiated by ( 1 ) in the presence of copper(I) bromide/2,2′‐bipyridyl catalyst system, to afford the corresponding α‐oxazolyl‐functionalized polystyrene ( 2 ). The polymerization proceeded via a controlled free radical polymerization process to produce the corresponding α‐oxazolyl‐functionalized polymers with predictable number‐average molecular weights, narrow molecular weight distributions in high‐initiator efficiency reactions. Post‐ATRP chain end modification of α‐oxazolyl‐functionalized polystyrene ( 2 ) to form the corresponding α‐carboxyl‐functionalized polystyrene ( 3 ) was achieved by successive acid‐catalyzed hydrolysis and saponification reactions. The polymerization processes were monitored by gas chromatography analyses. The unimolecular‐functionalized initiator and functionalized polymers were characterized by thin layer chromatography, spectroscopy, size exclusion chromatography, and nonaqueous titration analysis. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

18.
The incorporation of allylic monomers into highly reactive vinyl polymerizations provides a means to control molecular weight, conversion, and Trommsdorff effect to produce copolymers with desirable performance characteristics. The copolymerization behavior of styrene with sec‐butenyl acetate, whose copolymerization properties have not been reported, is investigated. Copolymers were produced via semicontinuous emulsion polymerization and characterized via NMR, gel permeation chromatography, differential scanning calorimetry, dynamic light scattering, and atomic force microscopy. A high degree of chain termination due to allylic hydrogen abstraction was observed, as expected, with resultant decreases in molecular weight and in monomer conversion. However, high conversions were achieved, and it was possible to incorporate high percentages of the allylic acetate comonomer into the polymer chain. Copolymer thermal properties are reported. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3191–3203, 2007  相似文献   

19.
An earlier article1 described the emulsion polymerization of styrene and various anionic comonomers, together with an anionic initiator, to give uniform latices at ca. 35% solids content. This article extends the work to cationic systems. Cationic comonomers 1,2-dimethyl 5-vinylpyridinium methylsulfate and 1-ethyl 2-methyl 5-vinylpyridinium bromide were synthesized and used with azobis(isobutyramidine hydrocholoride) initiator in the emulsifier- free emulsion polymerization of styrene. Recipes and results were generally comparable to those of the anionic systems, excepts for the dependence of particle diameter on comonomers concentration. Here the initial decrease was followed by an increase in particle diameter at higher comonomer content. The surface charge increased sharply with comonomer content.  相似文献   

20.
A water‐based magnetite ferrofluid, with an average size of about 10 nm, was prepared in a first step by the chemical coprecipitation of ferrous and ferric salts. Oil‐based styrene (St) magnetite ferrofluid was obtained by the acidification of the water‐based magnetite ferrofluid and the dispersion of the acidified magnetite in St. Magnetic polymeric composite particles (MPCPs) were prepared by miniemulsion polymerization in the presence of the oil‐based St magnetite ferrofluid with hexadecane as a hydrophobe, 2,2′‐azobisisobutyronitrile as an initiator, and sodium dodecyl sulfate as an emulsifier. Methacrylic acid was used as a comonomer, and hydroxyethyl cellulose and polyvinylpyrrolidone were used as aid stabilizers subsequently. With the aim of improving the encapsulation degree of magnetite, avoiding pure polymer particles and exposed magnetite particles, and obtaining the narrowest particle size distributions, the encapsulation conditions of magnetite were investigated in detail. The results show that miniemulsion polymerization is an effective method for encapsulating magnetite into a hydrophobic polymer successfully. Exposed magnetite particles and pure polymer particles can be avoided completely by the selection of the appropriate preparation conditions. All the resulting MPCPs exhibited superparamagnetism and possessed some magnetic response. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4187–4203, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号