首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Mass spectrometric analytical techniques utilizing fast atom bombardment are used to ionize peptides extracted from biological sources, and tandem mass spectrometry methods are used to select a unique amino acid sequence-determining fragment ion for quantification of that peptide at the picomole level. This type of analysis maximizes the molecular specificity.  相似文献   

3.
The analysis of acylated proteins by mass spectrometry (MS) has largely been overshadowed in proteomics by the analysis of glycosylated and phosphorylated proteins; however, lipid modifications on proteins are proving to be of increasing importance in biomedical research. In order to identify the marker ions and/or neutral loss fragments that are produced upon collision-induced dissociation, providing a means to identify the common lipid modifications on proteins, peptides containing an N-terminally myristoylated glycine, a palmitoylated cysteine and a farnesylated cysteine were chemically synthesized. Matrix-assisted laser desorption/ionization time-of-flight time-of-flight (MALDI-TOF-TOF), electrospray ionization quadrupole time-of-flight (ESI Q-TOF), and electrospray ionization hybrid triple-quadrupole/linear ion trap (ESI QqQ(LIT)) mass spectrometers were used for the analysis. The peptide containing the N-terminally myristoylated glycine, upon CID, produced the characteristic fragments a1 (240.4 Th) and b1 (268.4 Th) ions as well as a low-intensity neutral loss of 210 Da (C14H26O). The peptides containing a farnesylated cysteine residue fragmented to produce a marker ion at a m/z of 205 Th (C15H25) as well as other intense farnesyl fragment ions, and a neutral loss of 204 Da (C15H24). The peptides containing a palmitoylated cysteine moiety generated neutral losses of 238 Da (C16H30O) and 272 Da (C16H32OS); however, no marker ions were produced. The neutral losses were more prominent in the MALDI-TOF-TOF spectra, whereas the marker ions were more abundant in the ESI QqQ(LIT) and Q-TOF mass spectra.  相似文献   

4.
High-throughput DNA sequencing has resulted in increasing input in protein sequence databases. Today more than 20 genomes have been sequenced and many more will be completed in the near future, including the largest of them all, the human genome. Presently, sequence databases contain entries for more than 425.000 protein sequences. However, the cellular functions are determined by the set of proteins expressed in the cell--the proteome. Two-dimensional gel electrophoresis, mass spectrometry and bioinformatics have become important tools in correlating the proteome with the genome. The current dominant strategies for identification of proteins from gels based on peptide mass spectrometric fingerprinting and partial sequencing by mass spectrometry are described. After identification of the proteins the next challenge in proteome analysis is characterization of their post-translational modifications. The general problems associated with characterization of these directly from gel separated proteins are described and the current state of art for the determination of phosphorylation, glycosylation and proteolytic processing is illustrated.  相似文献   

5.
High-throughput DNA sequencing has resulted in increasing input in protein sequence databases. Today more than 20 genomes have been sequenced and many more will be completed in the near future, including the largest of them all, the human genome. Presently, sequence databases contain entries for more than 425.000 protein sequences. However, the cellular functions are determined by the set of proteins expressed in the cell – the proteome. Two-dimensional gel electrophoresis, mass spectrometry and bioinformatics have become important tools in correlating the proteome with the genome. The current dominant strategies for identification of proteins from gels based on peptide mass spectrometric fingerprinting and partial sequencing by mass spectrometry are described. After identification of the proteins the next challenge in proteome analysis is characterization of their post-translational modifications. The general problems associated with characterization of these directly from gel separated proteins are described and the current state of art for the determination of phosphorylation, glycosylation and proteolytic processing is illustrated. Received: 16 December 1999 / Accepted: 17 December 1999  相似文献   

6.
A new instrumental concept for extraction of nanovolumes from open microchannels (dimensions 150 μm?×?50 μm, length 10 mm) manufactured on silicon microchips has been used in combination with a previously developed method for preconcentrating proteins and peptides in the open channels through electromigration. The extracted nanovolumes were further analyzed using nanoelectrospray ionization (nESI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) directly or with subsequent enzymatic protein digestion in a nanodroplet prior to the MS analysis. Preconcentration of the samples resulted in a 15-fold sensitivity increase in nESI for a neurotensin solution, and using MALDI-MS, amyloid beta (Aβ) peptides could be detected in concentrations down to 1 nM. The method was also successfully applied for detection of cell culture Aβ.  相似文献   

7.
Amphibian skin secretions contain a plethora of bioactive compounds, many of which are understood to act to deter ingestion by predators. Bradykinins in particular are constitutively expressed in many amphibian skin secretions, mediating a variety of effects including hyperalgesia and contraction of gastric smooth muscle. Using a variety of proteomic techniques (high-performance liquid chromatography (HPLC) separation, matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS), and quadrupole time-of-flight tandem mass spectrometry (Q-TOF-MS/MS)) the current study identified 13 bradykinin-like peptides in the skin secretions of Phyllomedusa hypochondrialis azurea, including several new C-terminally extended isoforms (VPPGFTPFRLT, VHypPGFTPFRQT) and a novel phyllokinin-like peptide (RPPGFTPFRVY). Identification of the cDNA sequences encoding these peptides led to the deduction that the peptides were derived from differential post-translational processing and modification of five different precursors. Such an event emphasises the metabolic efficiency of peptide production in amphibian venom, with multiple products perhaps selective to different receptors in a variety of predators generated from a single precursor. An unusual modification was also recognised in the present study, with several bradykinin-like peptides featuring hydroxyprolination of the first proline residue rather than the commonly targeted second. This alteration may be mediated by the structural organisation of N-terminal amino acids prior to precursor processing.  相似文献   

8.
Mass spectrometry of charged derivatives of peptides has been a growing area of interest in the past decade. Fragmentation of charged derivatives of peptides is believed to be different from than that of protonated peptides when analyzed by collisionally activated dissociation-tandem mass spectrometry (CAD-MS/MS). The charged derivatives fragment by charge-remote fragmentation mechanisms, which are usually classified as high-energy (HE)-CAD processes. Our objective in the present study is to investigate the mechanism of fragmentation of charged derivatives of peptides when analyzed by matrix-assisted laser desorption/ionization-postsource decay-mass spectrometry (MALDI-PSD-MS) and electrospray ionization (ESI)-CAD-MS/MS (ion trap), which involve low-energy processes. Three major types of hydrogens (alpha, beta, and amide) are available for migration during the formation of the *a(n) ions (the predominant ion series produced from these charged derivatives). To pinpoint which of the three hydrogens is involved in the formation of the *a(n) ions, deuterium-labeled peptide derivatives with labels at specific sites were synthesized and analyzed by MALDI-PSD-MS and ESI-CAD-MS/MS. Our results suggest that the amide hydrogen of the residue at which the cleavage occurs shifts during the formation of *a(n); this observation serves as evidence for the mechanism proposed earlier by Liao et al. for fragmentation of such charged derivatives. The results also help elucidate the structure of the *a(n) ions, *b(n) ions, and others formed during cleavage at the proline residue, as well as the ions formed during loss of the C-terminal residue from these charged derivatives.  相似文献   

9.
Controlled pyrolysis—electron impact mass spectrometry is a general method for the identification of polymers. It is shown here to be useful for the diagnosis of commercial halogen-containing polymers. The application of the technique both in a purely fingerprinting role, and by rationalising spectra in terms of structure and generalised thermal degradation pathways, is demonstrated. Inorganic oxides can have a secondary effect on degradative behaviour and spectral form.  相似文献   

10.
The term reactive oxygen species refers to small molecules that can oxidize, for example, nearby proteins, especially cysteine, methionine, tryptophan, and tyrosine residues. Tryptophan oxidation is always irreversible in the cell and can yield several oxidation products, such as 5-hydroxy-tryptophan (5-HTP), oxindolylalanine (Oia), kynurenine (Kyn), and N-formyl-kynurenine (NFK). Because of the severe effects that oxidized tryptophan residues can have on proteins, there is a great need to develop generally applicable and highly sensitive techniques to identify the oxidized residue and the oxidation product. Here, the fragmentation behavior of synthetic peptides corresponding to sequences recently identified in three skeletal muscle proteins as containing oxidized tryptophan residues were studied using postsource decay and collision-induced dissociation (CID) in matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry (MS) and CID in an electrospray ionization (ESI) double quadrupole TOF-MS. For each sequence, a panel of five different peptides containing Trp, 5-HTP, Kyn, NFK, or Oia residue was studied. It was always possible to identify the modified positions by the y-series and also to distinguish the different oxidation products by characteristic fragment ions in the lower mass range by tandem MS. NFK- and Kyn-containing peptides displayed an intense signal at m/z 174.1, which could be useful in identifying accordingly modified peptides by a sensitive precursor ion scan. Most importantly, it was always possible to distinguish isomeric 5-HTP and Oia residues. In ESI- and MALDI-MS/MS, this was achieved by the signal intensity ratios of two signals obtained at m/z 130.1 and 146.1. In addition, high collision energy CID in the MALDI-TOF/TOF-MS also permitted the identification of these two isomeric residues by their v- and w-ions, respectively.  相似文献   

11.
Mass spectrometric techniques are presented which allow one to analyze the sugar part bound to hydroxyproline in hydroxyproline-rich glycoproteins. The hydroxyproline (Hyp) glycans obtained by alkaline hydrolysis give abundant [M + Na](+) ions by electrospray ionization which after collision-induced dissociation (CID) yield inter alia [Hyp - H + Na](+). In mixtures a parent ion scan of this species will indicate the various molecular species which can then be analyzed by MS(n) after CID in an ion trap, where successive losses of the sugar units are observed. Methylation techniques allow one to distinguish between linear and branched isomeric structures.  相似文献   

12.
Phosphorylation is one of the most common posttranslational modifications of proteins in eukaryotic cells; it plays an important role in a wide spectrum of biological processes. This makes its study an important task for understanding cell functioning mechanisms. The aim of phosphoproteomics is a global mass spectral analysis of the phosphoprotein composition of cells, i.e., phosphoproteome. Nowadays, new effective methods are actively developed, which succeed not only in the detection of phosphorylated proteins but also in the determination of phosphorylated amino acid residues (phosphorylation sites) and in the quantitative comparison of phosphorylation among several specimens. Despite the analysis of protein phosphorylation remains a complicated problem, the available methods nowadays allow the detection of thousands of phosphorylation sites in the very same experiment. The present review covers the main methods utilized in contemporary phosphoproteomics: phosphoprotein and phosphopeptides enrichment as well as the mass spectrometric analysis of protein phosphorylation.  相似文献   

13.
Rhodopsin is the dim light photosensitive pigment of animals. In this work, we undertook to study the structure of rhodopsin from swine and compare it with bovine and rat rhodopsin. Porcine rhodopsin was analyzed using methodology developed previously for mass spectrometric analysis of integral membrane proteins. Combining efficient protein cleavage and high performance liquid chromatography separation with the sensitivity of mass spectrometry (MS), this technique allows the observation of the full protein map and the posttranslational modifications of the protein in a single experiment. The rhodopsin protein from a single porcine eye was sequenced completely, with the exception of two single-amino acid fragments and one two-amino acid fragment, and the gene sequence reported previously was confirmed. The posttranslational modifications, similar to the ones reported previously for bovine and rat rhodopsin, were also identified. Although porcine rhodopsin has a high degree of homology to bovine and rat rhodopsins and most of their posttranslational modifications are identical, the glycosylation and phosphorylation patterns observed were different. These results show that rhodopsin from a single porcine eye can be characterized completely by MS. This technology opens the possibility of rhodopsin structural and functional studies aided by powerful mass spectrometric analysis, using the fellow eye as an internal control.  相似文献   

14.
The field of mass spectrometry is now well developed for solving analytical and structural problems involving substances with molecular weights less than ca. 1000. The future challenge for mass spectrometry is in the area of macromolecule analysis and structural biology. This challenge will be met on two fronts. One is structural analysis of pieces of macromolecules, a task for tandem mass spectrometers. Tandem sector instruments offer sufficient control, reproducibility of results and ease of set-up that they will play a major role in structure studies. When designed to operate with extended array detectors, tandem sector instruments will also offer subpicomole detection limits. The second front is molecular weight measurements. Exciting advances include matrix-assisted laser desorption and electrospray ionization. The need for better means of mass analysis is forecast, and it is suggested that the Fourier transform mass spectrometer can meet the challenge. Success awaits a better understanding of the dynamics of high-mass ions. One route to improved understanding is outlined.  相似文献   

15.
Oxidative and nitrosative stress leaves footprints in the plant chloroplast in the form of oxidatively modified proteins. Using a mass spectrometric approach, we identified 126 tyrosine and 12 tryptophan nitration sites in 164 nitrated proteolytic peptides, mainly from photosystem I (PSI), photosystem II (PSII), cytochrome b(6) /f and ATP-synthase complexes and 140 oxidation products of tyrosine, tryptophan, proline, phenylalanine and histidine residues. While a high number of nitration sites were found in proteins from four photosynthetic complexes indicating that the nitration belongs to one of the prominent posttranslational protein modifications in photosynthetic apparatus, amino acid oxidation products were determined mostly in PSII and to a lower extent in PSI. Exposure of plants to light stress resulted in an increased level of tyrosine and tryptophan nitration and tryptophan oxidation in proteins of PSII reaction center and the oxygen-evolving complex, as compared to low light conditions. In contrast, the level of nitration and oxidation of these amino acid residues strongly decreased for all light-harvesting proteins of PSII under the same conditions. Based on these data, we propose that oxidative modifications of proteins by reactive oxygen and nitrogen species might represent an important regulatory mechanism of protein turnover under light stress conditions, especially for PSII and its antenna proteins.  相似文献   

16.
Combinatorial peptide libraries are a versatile tool for drug discovery. On-bead assays identify reactive peptides by enzyme-catalyzed staining and, usually, sequencing by Edman degradation. Unfortunately, the latter method is expensive and time-consuming and requires free N termini of the peptides. A method of rapid and unambiguous peptide sequencing by utilizing synthesis-implemented generation of termination sequences with subsequent matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometric analysis is introduced here. The required capped sequences are determined and optimized for a specific peptide library by a computer algorithm implemented in the program Biblio. A total of 99.7% of the sequences of a heptapeptide library sample could be decoded utilizing a single bead for each spectrum. To synthesize these libraries, an optimized capping approach has been introduced.  相似文献   

17.
Parkinson RT  Wilson RE 《Talanta》1968,15(9):931-938
A high-vacuum, low-temperature, continuous separation technique has been used in conjunction with a mass spectrometer for the analysis of carbon dioxide containing vpm amounts of H(2), He, CH(4), Ne, N(2), CO, O(2) and Ar. The method relies on the condensation of carbon dioxide on the walls of a glass U-tube, cooled in liquid nitrogen, connected between an inlet and the ion source. A high-pressure carbon dioxide sample thus enters the inlet leak but only the impurities pass through the U-tube and reach the ion source, resulting in considerable gain in sensitivity and elimination of interference from carbon dioxide. The sensitivity of the method is several orders of magnitude better than the normal mass spectrometric method.  相似文献   

18.
Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, p. 1450, June, 1989.  相似文献   

19.
Majer JR 《Talanta》1970,17(6):537-540
A method for the analysis of gas mixtures containing both carbon monoxide and nitrogen, by using a single-focussing mass spectrometer, is described. It involves measurement of the mass spectrum of a gas sample before and after conversion of the carbon monoxide present into carbon dioxide by means of the Schütze catalyst.  相似文献   

20.
Formaldehyde cross-linking of proteins is emerging as a novel approach to study protein-protein interactions in living cells. It has been shown to be compatible with standard techniques used in functional proteomics such as affinity-based protein enrichment, enzymatic digestion, and mass spectrometric protein identification. So far, the lack of knowledge on formaldehyde-induced protein modifications and suitable mass spectrometric methods for their targeted detection has impeded the identification of the different types of cross-linked peptides in these samples. In particular, it has remained unclear whether in vitro studies that identified a multitude of amino acid residues reacting with formaldehyde over the course of several days are suitable substitutes for the much shorter reaction times of 10-20 min used in cross-linking experiments in living cells. The current study on model peptides identifies amino-termini as well as lysine, tryptophan, and cysteine side chains, i.e. a small subset of those modified after several days, as the major reactive sites under such conditions, and suggests relative position in the peptide sequence as well as sequence microenvironment to be important factors that govern reactivity. Using MALDI-MS, mass increases of 12 Da on amino groups and 30 Da on cysteines were detected as the major reaction products, while peptide fragment ion analysis by tandem mass spectrometry was used to localize the actual modification sites on a peptide. Non-specific cross-linking was absent, and could only be detected with low yield at elevated peptide concentrations. The detailed knowledge on the constraints and products of the formaldehyde reaction with peptides after short incubation times presented in this study is expected to facilitate the targeted mass spectrometric analysis of proteins after in vivo formaldehyde cross-linking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号