首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the effects of substituents attached to the silicon atom on the thermal rearrangement reactions of α‐silyl alcohols, the thermal rearrangement reactions of dimethylsilyl methanol (CH3)2SiHCH2OH and vinylsilyl methanol CH2?CHSiH2CH2OH were studied by ab initio calculations at the G3 level. Geometries of various stationary points were fully optimized at the MP2(full)/6‐31G(d) and MP2(full)/6‐311G(d,p) levels, and harmonic vibrational frequencies were calculated at the same levels. The reaction paths were investigated and confirmed by intrinsic reaction coordinate (IRC) calculations at the MP2(full)/6‐31G(d) level. The results show that two dyotropic reactions could occur when (CH3)2SiHCH2OH or CH2?CHSiH2CH2OH is heated. One is Brook rearrangement reaction (reaction A), and the dimethylsilyl or vinylsilyl groups migrates from carbon atom to oxygen atom coupled with a simultaneous migration of a hydrogen atom from oxygen atom to carbon atom passing through a double three‐membered ring transition state, forming dimethylmethoxylsilane (CH3)2SiHOCH3 or methoxylvinylsilane CH2?CHSiH2OCH3; the other is a hydroxyl group migration (reaction B) from carbon atom to silicon atom, coupled with a simultaneous migration of a hydrogen atom from silicon atom to carbon atom, via a double three‐membered ring transition state, forming trimethylsilanol (CH3)3SiOH or methylvinylsilanol CH3SiH(OH)CH?CH2. The G3 barriers of the reactions A and B were computed to be 312.8 and 241.4 kJ/mol for (CH3)2SiHCH2OH, and 317.6 and 233.7 kJ/mol for CH2?CHSiH2CH2OH, respectively. On the basis of the MP2(full)/6‐31G(d) optimized parameters, vibrational frequencies, and G3 energies, the reaction rate constants k(T) and equilibrium constants K(T) were calculated using canonical variational transition state theory (CVT) with centrifugal‐dominant small‐curvature tunneling (SCT) approximation over a temperature range of 400–1800 K. The influences of methyl and vinyl groups attached to the silicon atom on reactions are discussed. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

2.
The borazine derivatives B, B′, B″‐tris[(trichlorosilyl)methyl]borazine [B{CH2(SiCl3)}NH]3 ( 1 ), and B, B′, B″‐tris[{dichloro(methyl)silyl}methyl]borazine [B{CH2(SiCl2CH3)}NH]3 ( 2 ) were prepared by reacting (Cl3Si)CH2(BCl2) ( 3 ) and [Cl2(CH3)Si]CH2(BCl2) ( 4 ) with hexamethyldisilazane (hmds), respectively. Both compounds, 1 and 2 crystallize in space group R3c with a = 1712.53(4), c = 1230.33(4) pm, Z = 6, R1 = 0.030, and a = 1713.8(2), c = 1258.7(2) pm, Z = 6, R1 = 0.034, respectively. According to the single crystal X‐ray diffraction analyses, the title compounds show a planar B3N3 six‐membered ring with B—N distances of 142.3(3) pm (point symmetry C3) and synfacial oriented substituents. The borazine derivatives have also been characterized by NMR and IR spectroscopy as well as by MS spectrometry.  相似文献   

3.
For a set of 32 selected free radicals, energy minimum structures, harmonic vibrational wave numbers ωe, principal moments of inertia IA, IB, and IC, heat capacities C°p(T), entropies S°(T), thermal energy contents H°(T) ? H°(0), and standard enthalpies of formation ΔfH°(T) were calculated at the G3MP2B3 level of theory in the temperature range 200–3000 K. In this article, thermodynamic functions at T = 298.15 K are presented and compared with recent experimental values. The mean absolute deviation between calculated and experimental ΔfH°(298.15) values resulted in 3.91 kJ mol?1, which is close to the average experimental uncertainty of ± 3.55 kJ mol?1. The influence of hindered rotation on thermodynamic functions is studied for isopropyl and tert‐butyl radicals. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 550–560, 2002  相似文献   

4.
Kinetics of the reactions of benzhydrylium ions (Aryl2CH+) with the vinylsilanes H2C?C(CH3)(SiR3), H2C?C(Ph)(SiR3), and (E)‐PhCH?CHSiMe3 have been measured photometrically in dichloromethane solution at 20 °C. All reactions follow second‐order kinetics, and the second‐order rate constants correlate linearly with the electrophilicity parameters E of the benzhydrylium ions, thus allowing us to include vinylsilanes in the benzhydrylium‐based nucleophilicity scale. The vinylsilane H2C?C(CH3)(SiMe3), which is attacked by electrophiles at the CH2 group, reacts one order of magnitude faster than propene, indicating that α‐silyl‐stabilization of the intermediate carbenium ion is significantly weaker than α‐methyl stabilization because H2C?C(CH3)2 is 103 times more reactive than propene. trans‐β‐(Trimethylsilyl)styrene, which is attacked by electrophiles at the silylated position, is even somewhat less reactive than styrene, showing that the hyperconjugative stabilization of the developing carbocation by the β‐silyl effect is not yet effective in the transition state. As a result, replacement of vinylic hydrogen atoms by SiMe3 groups affect the nucleophilic reactivities of the corresponding C?C bonds only slightly, and vinylsilanes are significantly less nucleophilic than structurally related allylsilanes.  相似文献   

5.
6.
A series of binuclear complexes [{Cp*Ir(OOCCH2COO)}2(pyrazine)] ( 1 b ), [{Cp*Ir(OOCCH2COO)}2(bpy)] ( 2 b ; bpy=4,4′‐bipyridine), [{Cp*Ir(OOCCH2COO)}2(bpe)] ( 3 b ; bpe=trans‐1,2‐bis(4‐pyridyl)ethylene) and tetranuclear metallamacrocycles [{(Cp*Ir)2(OOC‐C?C‐COO)(pyrazine)}2] ( 1 c ), [{(Cp*Ir)2(OOC‐C?C‐COO)(bpy)}2] ( 2 c ), [{(Cp*Ir)2(OOC‐C?C‐COO)(bpe)}2] ( 3 c ), and [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](pyrazine)}2] ( 1 d ), [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](bpy)}2] ( 2 d ), [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](bpe)}2] ( 3 d ) were formed by reactions of 1 a – 3 a {[(Cp*Ir)2(pyrazine)Cl2] ( 1 a ), [(Cp*Ir)2(bpy)Cl2] ( 2 a ), and [(Cp*Ir)2(bpe)Cl2] ( 3 a )} with malonic acid, fumaric acid, or H2ADB (azobenzene‐4,4′‐chcarboxylic acid), respectively, under mild conditions. The metallamacrocycles were directly self‐assembled by activation of C? H bonds from dicarboxylic acids. Interestingly, after exposure to UV/Vis light, 3 c was converted to [2+2] cycloaddition complex 4 . The molecular structures of 2 b , 1 c , 1 d , and 4 were characterized by single‐crystal x‐ray crystallography. Nanosized tubular channels, which may play important roles for their stability, were also observed in 1 c , 1 d , and 4 . All complexes were well characterized by 1H NMR and IR spectroscopy, as well as elemental analysis.  相似文献   

7.
Ab initio molecular orbital calculations at the G2(MP2) level have been carried out on cyclopropylsilylene C3H5SiH. Four equilibrium structures were located. Like H2Si, the ground state of C3H5SiH is singlet and the triplet is the low‐lying excited state. The singlet–triplet separation energy is 127.9 kJ/mol. The cis‐trans isomerization path of singlet cyclopropylsilylene was investigated by intrinsic reaction coordinate (IRC) calculations. The calculations show that no gauche conformers exist along the potential energy curve of the cis‐trans isomerization and the isomerization happens with a barrier of 30.1 kJ/mol. Changes (ΔH and ΔG) in thermodynamic functions, equilibrium constant K(T), and A factor and reaction rate constant k(T) in Eyring transition state theory of the cis‐trans isomerization were also calculated. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

8.
Reaction mechanisms between MH (M=B, Al) and the H2S molecule have been theoretically studied. The G3 ab initio and DFT calculations demonstrate that only one stable addition complex (HM:SH2, M=B, Al) can be formed, and that, starting from the addition complex (HM:SH2) two parallel reaction channels have been found: one is an addition reaction to give H2MSH via the three‐membered ring transition state (TS), and the other is a dehydrogenation reaction to give MSH+H2 via the four‐membered ring TS. Thermodynamics and Eyring transition state theory (TST) with the Wigner correction are also used to compute the thermodynamic functions, the equilibrium constants, A factors, and the rate constants of these reaction channels at 300–1500 K. The calculated results predict that the product H2BSH in the system of BH+H2S and the product AlSH+H2 in the system of AlH+H2S will be mainly observed. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

9.
Reactions of a Dibismuthane and of Cyclobismuthanes with Metal Carbonyls ‐ Syntheses of Complexes with R2Bi‐, RBi‐, Bi2‐ and Bin‐ligands (R = Me3CCH2, Me3SiCH2) Reactions of [Fe2(CO)9] with [(Me3CCH2)4Bi]2 or cyclo‐(Me3SiCH2Bi)n (n = 3 ‐ 5) lead to the complexes [(R2Bi)2Fe(CO)4], [RBiFe(CO)4]2[R = Me3CCH2, Me3SiCH2] and [Bi2Fe3(CO)9]. [Bi2{Mn(CO)2C5H4CH3}3] forms in a photochemical reaction of [Mn(CO)3C5H4CH3] with cyclo‐(Me3SiCH2Bi)n.  相似文献   

10.
N‐sulfinylacylamides R‐C(=O)‐N=S=O react with (CF3)2BNMe2 ( 1 ) to form, by [2+4] cycloaddition, six‐membered rings cyclo‐(CF3)2B‐NMe2‐S(=O)‐N=C(R)‐O for R = Me ( 2 ), t‐Bu ( 3 ), C6H5 ( 4 ), and p‐CH3C6H4 ( 5 ) while N‐sulfinylcarbamic acid esters R‐O‐C(=O)‐N=S=O react with 1 to yield mixtures of six‐membered (cyclo‐(CF3)2B‐NMe2‐S(=O)‐N=C(OR)‐O) and four‐membered rings (cyclo‐(CF3)2B‐NMe2‐S(=O)‐N(C=O)OR) for R = Me ( 6 and 9 ), Et ( 7 and 10 ), and C6H5 ( 8 and 11 ). The structure of 5 has been determined by X‐ray diffraction.  相似文献   

11.
Synthesis and Structure of Highly Functionalized 2, 3‐Dihydro‐1H‐1, 3, 2‐diazaboroles A series of differently substituted 2, 3‐dihydro‐1H‐1, 3, 2‐diazaboroles has been prepared by various methods. 1, 3‐Di‐tert‐butyl‐2‐trimethylsilylmethyl‐1H‐1, 3, 2‐diazaborole ( 7 ), 2‐isobutyl‐1, 3‐bis(1‐cyclohexylethyl)‐1H‐1, 3, 2‐diazaborole ( 8 ), 1, 3‐bis‐(1‐cyclohexylethyl)‐2‐trimethylsilylmethyl‐1H‐1, 3, 2‐diazaborole ( 9 ) 1, 3‐bis(1‐methyl‐1‐phenyl‐propyl)‐2‐trimethylsilylmethyl‐1H‐1, 3, 2diazaborole ( 10 ) and 2‐bromo‐1, 3‐bis(1‐methyl‐1‐phenyl‐propyl)‐1H‐1, 3, 2‐diazaborole ( 11 ) were formed by reaction of the corresponding 1, 4‐diazabutadienes with the boranes Me3SiCH2BBr2, iBuBBr2 and BBr3 followed by reduction of the resulting borolium salts [R1 = tBu, Me(cHex)CH, [Me(Et)Ph]C; R2 = Me3SiCH2, iBu, Br] with sodium amalgam. Treatment of 11 and 12 with silver cyanide afforded the 2‐cyano‐1, 3, 2‐diazaboroles 13 and 14 . An alternative route to compound 8 is based on the alkylation of 2‐bromo‐1, 3, 2‐diazaborole 12 with isobutyllithium. Equimolar amounts of 13 and isobutyllithium give rise to the formation of 15 . The new compounds were characterized by 1H‐, 13C‐, 11B‐NMR, IR and mass spectra. The molecular structures of 7 and meso ‐10 were confirmed by x‐ray structural analysis.  相似文献   

12.
The multiple‐channel reactions X + CF3CH2OCF3 (X = F, Cl, Br) are theoretically investigated. The minimum energy paths (MEP) are calculated at the MP2/6‐31+G(d,p) level, and energetic information is further refined by the MC‐QCISD (single‐point) method. The rate constants for major reaction channels are calculated by canonical variational transition state theory (CVT) with small‐curvature tunneling (SCT) correction over the temperature range 200–2000 K. The theoretical three‐parameter expressions for the three channels k1a(T) = 1.24 × 10?15T1.24exp(?304.81/T), k2a(T) = 7.27 × 10?15T0.37exp(?630.69/T), and k3a(T) = 2.84 × 10?19T2.51 exp(?2725.17/T) cm3 molecule?1 s?1 are given. Our calculations indicate that hydrogen abstraction channel is only feasible channel due to the smaller barrier height among five channels considered. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2012  相似文献   

13.
Investigation of Cocrystallization in the Systems Mn(OOCCH3)2-Co(OOCCH3)2-H2O, Mn(OOCCH3)2-Ni(OOCCH3)2-H2O, Mn(OOCCH3)2-Zn(OOCCH3)2-H2O at 60°C The three-component systems Mn(OOCCH3)2-Co(OOCCH3)2-H2O, Mn(OOCCH3)2-Ni(OOCCH3)2-H2O and Mn(OOCCH3)2-Zn(OOCCH3)2-H2O at 60°C were investigated by physio-chemical analysis. There is an interruption in the series of mixed crystals formed in the three-component systems. The inclusion of Co2+- and Ni2+ in Mn(OOCCH3)2 · 2 H2O of Mn2+ in Co(OOCCH3)2 · 2 H2O, Zn(OOCCH3)2 · 2 H2O and Ni(OOCCH3)2 · 4 H2O is based on isodimorphic substitution. It was found that in the system Mn(OOCCH3)2-Zn(OOCCH3)2-H2O crystallizes Zn(OOCCH3)2 · Mn(OOCCH3)2 · 2 H2O. It was identified by the X-ray and differential thermal analysis.  相似文献   

14.
Aluminium Hydrazides – Formation of a Dimeric Di( tert ‐butyl)aluminium Hydrazide Containing a Four‐Membered Al2N2 Heterocycle and Reaction of Dialkylaluminium Chloride with Dilithium Bis(trimethylsilyl)hydrazide The reaction of di(tert‐butyl)aluminium chloride with tert‐butylhydrazine yielded an adduct ( 1 ) which was isolated in a pure form and characterized by crystal structure determination. 1 reacted with n‐butyllithium by deprotonation and salt elimination to give the corresponding di(tert‐butyl)aluminium hydrazide ( 2 ), which is a dimer in solution and in the solid state and possesses a four‐membered Al2N2 heterocycle with two exocyclic N–N bonds. The structure of 2 differs from that of other di(tert‐butyl)aluminium hydrazides which have four‐ or five‐membered heterocycles. Treatment of impure samples of 1 with n‐butyllithium yielded by the cleavage of the N–N bonds a mixture of several unknown products, from which the dimeric, centrosymmetric aluminium amide [(Me3C)2AlN(H)CMe3]2 ( 3 ) was isolated. A similar product ( 4 ) was obtained in a low yield by the reaction of (Me3SiCH2)2AlCl with the dilithium hydrazide Li2N2(SiMe3)2. An intact N–N bond was neither found in the second product isolated from this reaction. Instead a tricyclic compound was formed by C–H activation which has two five‐membered AlNSiC2 heterocycles bridged by Al–N bonds.  相似文献   

15.
The Sc(OTf)3‐catalyzed [3+2] cycloaddition of allylsilanes to β‐silyl‐α,β‐unsaturated ketones (β‐silylenones) has been developed to form five‐membered syn‐1,3‐disilylketones diastereoselectively through the rearrangement of the silicon substituents on the allylsilane. Stabilization of the carbocation intermediates by a double silicon effect plays a key role in directing the course of the reaction to favor the [3+2] cycloaddition pathway over simple allylation.  相似文献   

16.
The solid‐state structure of the rhodium complex (dimethylamine–dimethylaminoborane–borane‐κ2H,H′)dihydridobis(triisopropylphosphane‐κP)rhodium(III) tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, [RhH2(C4H18B2N2)(C9H21P)2](C32H12BF24), is reported. The complex contains the linear diborazine H3B·NMe2BH2·NMe2H, a kinetically important intermediate in the transition‐metal‐mediated dehydrocoupling of H3B·NMe2H, ultimately affording the dimeric amino‐borane [H2BNMe2]2. The structure of the title complex contains a distorted octahedral RhIII centre, with mutually trans phosphane ligands and cis hydride ligands. The diborazine is bound through two Rh—H—B σ‐bonds and exhibits a gauche conformation with respect to the B—N—B—N backbone.  相似文献   

17.
A μ3‐η222‐silane complex, [(Cp*Ru)33‐η222‐H3SitBu)(μ‐H)3] ( 2 a ; Cp*=η5‐C5Me5), was synthesized from the reaction of [{Cp*Ru(μ‐H)}33‐H)2] ( 1 ) with tBuSiH3. Complex 2 a is the first example of a silane ligand adopting a μ3‐η222 coordination mode. This unprecedented coordination mode was established by NMR and IR spectroscopy as well as X‐ray diffraction analysis and supported by a density functional study. Variable‐temperature NMR analysis implied that 2 a equilibrates with a tautomeric μ3‐silyl complex ( 3 a ). Although 3 a was not isolated, the corresponding μ3‐silyl complex, [(Cp*Ru)33‐η22‐H2SiPh)(H)(μ‐H)3] ( 3 b ), was obtained from the reaction of 1 with PhSiH3. Treatment of 2 a with PhSiH3 resulted in a silane exchange reaction, leading to the formation of 3 b accompanied by the elimination of tBuSiH3. This result indicates that the μ3‐silane complex can be regarded as an “arrested” intermediate for the oxidative addition/reductive elimination of a primary silane to a trinuclear site.  相似文献   

18.
The water soluble poly(ferrocenylsilane) polycation, poly(ferrocenyl(3‐ammoniumpropyl)methylsilane), was synthesized by transition metal‐catalyzed ring‐opening polymerization of the novel [1]ferrocenophane Fe(η‐C5H4)2SiCH3(CH2)3Cl and by subsequent side group modification. Amination of the chloropropyl moieties using potassium 1,1,3,3‐tetramethyldisilazide followed by acidic hydrolysis produced the polycation. The polycation was employed together with poly(sodium vinylsulfonate) in the electrostatic layer‐by‐layer self‐assembly process to form organometallic multilayers on quartz. The multilayer fabrication process was monitored using UV/Vis absorption spectroscopy and XPS.  相似文献   

19.
We chose DPP‐BDT‐DPP {DPP=diketopyrrolopyrrole, BDT=4,8‐di‐[2‐(2‐ethylhexyl)‐thienyl]benzo[1,2‐b:4,5‐b′]dithiophene} as a model backbone and varied the anchoring groups [? C5H11, ? COOCH3, and ? SiCH3(OSiCH3)2] terminated on the N‐substituted alkyl‐chain spacer of the DPP units to study the effect of anchoring terminals on the morphology of blend film and on the device performances of bulk heterojunction solar cells. By replacing the nonpolar ? C5H11 anchoring terminal with the polar ? COOCH3 anchoring terminal leads to an enhancement in the short‐circuit current density (Jsc) (4.62 vs. 9.32 mA cm?2), whereas the value of Jsc sharply decreases to 0.45 mA cm?2 if the ? C5H11 anchoring terminal is replaced by a ? SiCH3(OSiCH3)2 group. The changes in Jsc are associated with changes in the π–π stacking distance (3.39→3.34 Å vs. 3.39→3.45 Å) and the phase size (50→20 nm vs. 50→>250 nm) through alteration of the anchoring group from ? C5H11 to ? COOCH3 versus from ? C5H11 to ? SiCH3(OSiCH3)2. Interestingly, the anchoring terminals bring about drastic changes in molecular orientations, which result in different out‐of‐plane hole transport. This is the first time this effect has been systemically demonstrated to improve photocurrent generation by manipulating the dipolar anchoring groups terminated on the alkyl‐chain spacer.  相似文献   

20.
A novel chiral phosphane (S)‐2‐(4‐isopropyl‐2‐oxazoline‐2‐yl)phenyl‐di‐N‐pyrrolylphosphane (S‐PyrPOx) based on asymmetric oxazoline ring has been prepared and characterised. Reaction of this ligand and its phenyl‐substituted analogue (S‐PhPOx) with H4Ru4(CO)12 and H3RhOs3(CO)12 gave substituted derivatives H4Ru4(CO)10(1,1‐PhPOx) ( 2 ), H4Ru4(CO)10(1,1‐PyrPOx) ( 3 ), and H3RhOs3(CO)10(1,1‐PyrPOx) ( 4 ), which were structurally characterised by X‐ray crystallography in solid state and by a variety of multinuclear NMR spectroscopic measurements in solution. In all studied clusters the coordinated ligands form five‐membered chelate rings through phosphorus and nitrogen atoms of oxazoline moiety to afford a novel chiral center associated with the substituted metal atom. The substitution reactions demonstrate extremely high stereoselectivity, which results in formation of only one diastereomer in all three cases to give S,S isomer in 2 and S,R isomer in 3 and 4 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号