首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of homogeneous and isotropic turbulence with a shock wave is observed by solving the Reynolds-averaged Navier–Stokes equations with the k? turbulence model. All turbulent fluctuations are measured at the period of expansion in the turbulent field and during compression by the reflected shock on turbulent field, and it is observed that the longitudinal turbulent velocity fluctuation is enhanced more at the period of expansion due to incident shock wave movement far from the turbulent field. The amplification of the turbulent kinetic energy (TKE) level in the shock/turbulence interaction depends on the shock wave strength and the longitudinal velocity difference across the shock wave. On decreasing the longitudinal velocity difference across the shock, the turbulent kinetic energy (TKE) level is less amplified. The TKE level is amplified by the factor of 1.5–1.8 in the shock/turbulence interaction where the dissipation rate of TKE decreases in all cases of shock/turbulence interaction. After the shock/turbulence interaction, the turbulent dissipative-length scale is amplified slightly and the amplification of the length scales decreases when increasing the shock strength. To cite this article: M.A. Jinnah, K. Takayama, C. R. Mecanique 333 (2005).  相似文献   

2.
To allow for a reliable examination of the interaction between velocity fluctuations, acoustics and combustion, a novel numerical procedure is discussed in which a spectral solution of the Navier–Stokes equations is directly associated to a high-order finite difference fully compressible DNS solver (sixth order PADE). Using this combination of high-order solvers with accurate boundary conditions, simulations have been performed where a turbulent premixed V-shape flame develops in grid turbulence. In the light of the DNS results, a sub-model for premixed turbulent combustion is analyzed. To cite this article: R. Hauguel et al., C. R. Mecanique 333 (2005).  相似文献   

3.
caa simulation requires the calculation of the propagation of acoustic waves with low numerical dissipation and dispersion error, and to take into account complex geometries. To give, at the same time, an answer to both challenges, a Discontinuous Galerkin Method is developed for Computational AeroAcoustics. Euler's linearized equations are solved with the Discontinuous Galerkin Method using flux splitting technics. Boundary conditions are established for rigid wall, non-reflective boundary and imposed values. A first validation, for induct propagation is realized. Then, applications illustrate: the Chu and Kovasznay's decomposition of perturbation inside uniform flow in term of independent acoustic and rotational modes, Kelvin–Helmholtz instability and acoustic diffraction by an air wing. To cite this article: Ph. Delorme et al., C. R. Mecanique 333 (2005).  相似文献   

4.
We extend the validity range of Kida's log-stable law of stability index α=1.65 and intermittency parameter μ=0.2 to a new range of Reynolds number. This law describes intermittencies in fully developed turbulent flows or more precisely the p.d.f. of turbulence dissipation. Former measurements of the hyper-flatness factors of order 4, 5, 6 of turbulent velocity increments, coming from both experimental works and numerical simulations are used. We show that the power-law variation of these hyper-flatness factors with Taylor scale based Reynolds numbers Reλ can be fitted, for Reλ ranging from 35 to 750, by a log-stable law of stability index α=1.65 and intermittency parameter μ=0.21. To cite this article: N. Rimbert, O. Séro-Guillaume, C. R. Mecanique 331 (2003).  相似文献   

5.
6.
A generalization of the Woodward's theorem is applied to the case of random signals jointly modulated in amplitude and frequency. This yields the signal spectrum and a rather robust estimate of the bispectrum. Furthermore, higher order statistics that quantify the amount of energy in the signal due to nonlinearities, e.g., wave–wave interaction in the case of water waves, can be inferred. Considering laboratory wind generated water waves, comparisons between the presented generalization and more standard techniques allow to extract the spectral energy due to nonlinear wave–wave interactions. It is shown that our analysis extends the domain of standard spectral estimation techniques from narrow-band to broad-band processes. To cite this article: T. Elfouhaily et al., C. R. Mecanique 331 (2003).  相似文献   

7.
8.
A new modeling strategy is developed to introduce tabulated chemistry methods in the LES of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when the subgrid scale turbulence vanishes. The filtered flame structure is mapped by 1D filtered laminar premixed flames. Closure of the filtered progress variable and the energy balance equations are carefully addressed. The methodology is applied to 1D and 2D filtered laminar flames. These computations show the capability of the model to recover the laminar flame speed and the correct chemical structure when the flame wrinkling is completely resolved. The model is then extended to turbulent combustion regimes by introducing subgrid scale wrinkling effects on the flame front propagation. Finally, the LES of a 3D turbulent premixed flame is performed. To cite this article: R. Vicquelin et al., C. R. Mecanique 337 (2009).  相似文献   

9.
The stability of finite amplitude roll waves that may develop at a liquid free surface in inclined open channels of arbitrary cross-section is studied. In the framework of shallow water theory with turbulent friction the modulation equations for wave series are derived and a nonlinear stability criterion is obtained. To cite this article: A. Boudlal, V.Yu. Liapidevskii, C. R. Mecanique 330 (2002) 291–295.  相似文献   

10.
The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of −30 to 30 kPa for each equivalence ratio (Φ = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture under the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINOx simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated.  相似文献   

11.
One carries out three-dimensional large-eddy simulations of natural convection in a horizontal annulus using Smagorinsky's dynamic subgrid model. The onset of transition to turbulence and turbulent regimes are analyzed. The characteristics of unstable flows and their influence on the heat-transfer process are studied. To cite this article: E.L.M. Padilla, A. Silveira-Neto, C. R. Mecanique 333 (2005).  相似文献   

12.
This Note deals with an efficient algorithm to carry out the plastic integration and compute the stresses due to large strains for materials satisfying the Hill's anisotropic yield criterion. The classical algorithm of plastic integration such as ‘Return Mapping Method’ is largely used for nonlinear analyses of structures and numerical simulations of forming processes, but it requires an iterative schema and may have convergence problems. A new direct algorithm based on a scalar method is developed which allows us to directly obtain the plastic multiplier without an iteration procedure; thus the computation time is largely reduced and the numerical problems are avoided. To cite this article: I. Titeux et al., C. R. Mecanique 332 (2004).  相似文献   

13.
In recent years, several numerical studies have shown the feasibility of Direct Noise Computation (DNC) where the turbulent flow and the radiated acoustic field are obtained simultaneously by solving the compressible Navier–Stokes equations. The acoustic radiation obtained by DNC can be used as reference solution to investigate hybrid methods in which the sound field is usually calculated as a by-product of the flow field obtained by a more conventional Navier–Stokes solver. A hybrid approach is indeed of practical interest when only the non-acoustic part of the aerodynamic field is available. In this review, some acoustic analogies or hybrid approaches are revisited in the light of CAA. To cite this article: C. Bailly et al., C. R. Mecanique 333 (2005).  相似文献   

14.
15.
Direct numerical simulations (DNS) of a hot combustion product jet interacting with a lean premixed hydrogen-air coflow are conducted to fundamentally investigate turbulent jet ignition (TJI) in a three-dimensional configuration. TJI is an efficient method for initiating and controlling combustion in ultra-lean combustion systems. Fully compressible gas dynamics and species equations are solved with high order finite difference methods. The hydrogen-air reaction is simulated with a reliable detailed chemical kinetics mechanism. The physical processes involved in the TJI-assisted combustion are investigated by considering the flame heat release, temperature, species concentrations, vorticity, and Baroclinc torque. The complex turbulent flame and flow structures are delineated in three main: i) hot product jet, ii) burned-mixed, and iii) flame zones. In the TJI-assisted combustion, the flow structures and the flame features such as flame speed, temperature, and species distribution are found to be quite different than those in “standard” turbulent premixed combustion due to the existence of a high energy turbulent hot product jet. The flow structures and statistics are also found to be different than those normally seen in non-isothermal non-reacting jets.  相似文献   

16.
The drawbacks of the classical theory of brittle fracture, based on Griffith's criterion – a notion of critical energy release rate –, and a fracture toughness k, are numerous (think for instance the issue of crack initiation) and penalize its validity as a good model. Are all attempts at building a macroscopic theory of fracture doomed? The variety and complexity of micromechanical phenomena would suggest that this is indeed the case. We believe however that structural effects still preside over fracture and consequently propose to modify slightly Griffith theory without altering its fundamental components so that it becomes amenable to the widest range of situations. The examples presented here will demonstrate that a revisited energetic framework is a sound basis for a theory which can be used at the engineering level and which reconciles seemingly contradictory viewpoints. To cite this article: G. Francfort, J.-J. Marigo, C. R. Mecanique 330 (2002) 225–233.  相似文献   

17.
We consider a fully discrete scheme for a quasistatic frictional contact problem between a viscoelastic body and an obstacle. The contact is bilateral, the friction is modeled with Tresca's law and the behavior of the material is described with a viscoelastic constitutive law with long memory. We state an existence and uniqueness result for the discrete solution, followed by error estimate results. Then, we present numerical simulations in the study of a two-dimensional test example. To cite this article: Á. Rodríguez-Arós et al., C. R. Mecanique 334 (2006).  相似文献   

18.
The spatial resolution requirements of the Stochastic Fields probability density function approach are investigated in the context of turbulent premixed combustion simulation. The Stochastic Fields approach is an attractive way to implement a transported Probability Density Function modelling framework into Large Eddy Simulations of turbulent combustion. In premixed combustion LES, the numerical grid should resolve flame-like structures that arise from solution of the Stochastic Fields equation. Through analysis of Stochastic Fields simulations of a freely-propagating planar turbulent premixed flame, it is shown that the flame-like structures in the Stochastic Fields simulations can be orders of magnitude narrower than the LES filter length scale. The under-resolution is worst for low Karlovitz number combustion, where the thickness of the Stochastic Fields flame structures is on the order of the laminar flame thickness. The effect of resolution on LES predictions is then assessed by performing LES of a laboratory Bunsen flame and comparing the effect of refining the grid spacing and filter length scale independently. The usual practice of setting the LES filter length scale equal to grid spacing leads to severe under-resolution and numerical thickening of the flame, and to substantial error in the turbulent flame speed. The numerical resolution required for accurate solution of the Stochastic Fields equations is prohibitive for many practical applications involving high-pressure premixed combustion. This motivates development of a Thickened Stochastic Fields approach (Picciani et al. Flow Turbul. Combust. X, YYY (2018) in order to ensure the numerical accuracy of Stochastic Fields simulations.  相似文献   

19.
A general smooth and convex yield function is proposed, able to model the particular behavior of geomaterials, particularly rock materials that are characterized by a linear or parabolic Mohr's envelope, and a particular shape in the deviatoric plane. These characteristics are defined by two functions: the equation of the criterion in the meridian plane and the extension ratio, which are integrated in a general equation ensuring convexity and smoothness of the yield function, whatever the characteristic functions. This expression is interesting, because it allows a straightforward development of a constitutive model based on triaxial tests, in extension and compression. It also allows the development of smooth criteria corresponding to the Mohr–Coulomb criterion and the H?k–Brown criterion, the latter typical of rock mechanics. To cite this article: S. Maïolino, C. R. Mecanique 333 (2005).  相似文献   

20.
The sedimentation of N?1 small arbitrarily-shaped solid bodies near a solid plane is addressed by discarding inertial effects and using 6N boundary-integral equations. Numerical results for 2 or 3 identical spheres reveal that combined wall–particle and particle–particle interactions deeply depend on the cluster's geometry and distance to the wall and may even cancel for a sphere which then moves as it were isolated. To cite this article: A. Sellier, C. R. Mecanique 333 (2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号