首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of Ag6(tsac)6 ( 1 ) (tsac = thiosaccharinate anion) with triphenylphosphine gives rise to the already reported [Ag(tsac)(PPh3)3] complex ( 2 ) and to two new silver‐thiosaccharinate‐phosphine complexes, [Ag(tsac)(PPh3)2] ( 3 ) and [Ag4(tsac)4(PPh3)4] ( 4 ) (PPh3= triphenylphosphine). Spectroscopic characterization was carried out using IR, UV‐Visible and NMR techniques and confirmed by single crystal X‐ray diffraction. In each complex a singular coordination mode for the thiosaccharinate ligand is observed. The most important features of the different coordination modes of the thionates are discussed. Compound 3 crystallizes in monoclinic system, space group Pn, with a = 11.2293(3) Å, b = 12.7282(3) Å, c = 13.6056(4) Å, β = 94.985(2)°, Z = 2; while crystals of compound 4 are monoclinic, space group P21/n, a = 15.024(3) Å, b = 14.681(3) Å, c = 21.914(4) Å, β = 95.31(3)°, Z = 2. The coordination around the silver atoms in both complexes consists of almost trigonal‐planar arrangements, AgP2S in 3 and AgS2P in 4 .  相似文献   

2.
The η1‐thiocarbamoyl palladium complexes [Pd(PPh3)(η1‐SCNMe2)(η2‐S2R)] (R = P(OEt)2, 2 ; CNEt2, 3 ) and trans‐[Pd(PPh3)21‐SCNMe2)(η1‐Spy)], 4 , (pyS: pyridine‐2‐thionate) are prepared by reacting the η2‐thiocarbamoyl palladium complex [Pd(PPh3)22‐SCNMe2)][PF6], 1 with (EtO)2PS2NH4, Et2NCS2Na, and pySK in methanol at room temperature, respectively. Treatment of 1 with dppm (dppm: bis(diphenylphosphino)methane) in dichloromethane at room temperature gives complex [Pd(PPh3)(η1‐SCNMe2)(η2‐dppm)] [PF6], 5 . All of the complexes are identified by spectroscopic methods and complex 1 is determined by single‐crystal X‐ray diffraction.  相似文献   

3.
Silver triflate [AgOTf] assisted de-bromination gives [Ni(dppm/dppe/(PPh3)2)(OTf)2], which on reaction with aryldiethynyls and gold(I) phosphines in CH2Cl2 medium, by the self assembly technique, leads to [{Ni(dppm/dppe/(PPh3)2}{(1,4-AB)Au(PPh3)}2] [{Ni4(dppm/dppe/(PPh3)2)4(1,4AB)4}] [dppm/dppe = diphenyl phosphino-methane (1), -ethane (2), where OSO2CF3 is the triflate anion]. The maximum molecular peak of the corresponding molecule is observed in the ESI mass spectrum. I.r. spectra of the complexes show –C=C– and –C=N–, as well as phosphine stretching. The 1H-n.m.r. spectra as well as 31P(1H)-n.m.r. suggest solution stereochemistry, proton movement, phosphorus proton interaction. Considering all the moities there are a lot of carbon atoms in the molecule reflected by the 13C-n.m.r. spectrum. In the 1H–1H-COSY spectrum of the present complexes and contour peaks in the 1H–13C-HMQC spectrum, assign the solution structure and stereo-retentive transformation in each step.  相似文献   

4.
It has been shown for the first time that the reaction of bi-valent tin acetyl-acetonate with palladium carbonylphosphine clusters, Pd4(CO)5(PPh3)4 (I), Pd4(CO)5(PEt3)4 (II) and Pd3(CO)3(PPh3)4 (III), results in the formation of heterometal pentanuclear clusters of general formula Pd3Sn2(acac)4(CO)2(PR3)3; R  Ph (IV), Et (V). X-ray analysis of Pd3Sn2(acac)4(CO)2(PPh3)3 at 20°C (λ(Mo), 4396 reflections, space group P21/n, Z = 4, R = 0.037) shows that IV in the form of the crystalline hydrate, Pd3Sn2(acac)4(CO)2(PPh3)3 · χH2O (χ ∼ 1), contains a distorted “propeller”-shaped Pd3Sn2 metal frame with PdSn distances of 2.679–2.721(1) Å; two short PdPd bonds, 2.708 and 2.720(1) Å, bridged by μ2-CO ligands, and an elongated central Pd(1)Pd(2) bond of 2.798 Å. Sn atoms have distorted octahedral coordination, the dihedral angles formed by Pd3 moieties and two Pd2Sn triangles are 127.6 and 106.5°; and the angle between Pd2Sn moieties is 126.0°.  相似文献   

5.
Six heteroatomic complexes of diphenylphosphine derivatives with heavy metals (Ni, Pd, Pt, Mo and W) were prepared and subjected to elemental spectral and thermal analyses. The different physicochemical methods used indicated the formulae [NiCl2(dppm)], [PtCl2(dppm)] and [Mo(CO)4(dppm)] (dppm=bis(diphenylphosphine)methane, the dppm in these complexes behaving as a bidentate ligand), [Pd(CN)2(dppm)2] (in which the dppm behaves as a monodentate ligand), [W(CO)4(dppe)2] and [Mo(CO)4(dppe)2] (dppe=1,1-bis(diphenylphosphine)ethene, the dppe in these complexes behaving as a bidentate ligand). The thermal analyses (DTA and TG) confirmed these structures. The results of spectral and thermal analyses were compared. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Four new lead(II) thiosaccharinate complexes: [Pb(tsac)2H2O] (1) (tsac: thiosaccharinate anion), [Pb2(tsac)4(py)4] (2) (py: pyridine), [Pb(tsac)(o‐phen)2](tsac)·CH3CN (3) (o‐phen: 1,10‐phenantroline), and [Pb(tsac)2(bipy)] (4) (bipy: 2,2′‐bipyridine) were prepared. The infrared and electronic spectra as well as the thermal analysis of all the compounds were recorded and discussed. The thiosaccharinate anion acts in three different coordination forms, one of then reported for the first time. The crystal structures of complexes 2 and 3 have been determined by single crystal X‐ray diffractometry. In complex 2 , two monomeric moieties are joined together forming a symmetric bis‐μ‐sulphur bridged dimer by interaction of two lead(II) atoms through the exocyclic sulphur atoms of two thiosaccharinate ligands. The seven‐fold coordination sphere of each lead atom is completed by two pyridine nitrogen atoms and by another sulfur and two nitrogen atoms of the thiosaccharinate anions. In complex 3 , the lead(II) atom is coordinated by four nitrogen atoms of two 1,10‐phenantroline molecules and by the sulfur and nitrogen atoms of one thiosaccharinate ion. The second anion has an electrostatic interaction with the nucleus.  相似文献   

7.
Silver assisted de-bromination gives [Au2(dppm/dppe/dppa) (OTf)2], which on reaction with 4,4′-bpy and gold(I) phosphines in CH2Cl2 medium, by the self assembly technique, leads to [(PPh3)Au(4,4′-bpy)Au(PPh3)], (1a–1d,2), [{Au2(dppm/dppe/dppa)}{(4,4-bpy)Au(PPh3)}2](NO3)4, (3), [{Au4(dppm/dppe/dppa)2(4,4-bpy)2}](OTf)4, (4), [{(PPh3)AuI(4,4′-bpy)}2AuIII(C6F5/Mes)](NO3)3, (5) [dppm/dppe/dppa =diphenyl phosphino-methane(a), –ethane(b), ammine(c), C6F5/Mes pentafluorophenyl/mesitylene]. The maximum molecular peak of the corresponding molecule is observed in the ESI mass spectrum. Ir spectra of the complexes show –C=C–, –C=N–, as well as phosphine, mesitylene and pentafluorophenyl stretching. The 1H-NMR spectra as well as 31P(1H)-NMR suggest solution stereochemistry, proton movement and phosphorus proton interaction. Considering all the moities there are a lot of carbon atoms in the molecule reflected by the 13C(H)-NMR spectrum. In the 1H–1H COSY spectrum of the present complexes and contour peaks in the 1H–13C-HMQC spectrum, assign the solution structure and stereoretentive transformation in each step.  相似文献   

8.
On the Reactivity of Alkylthio Bridged 44 CVE Triangular Platinum Clusters: Reactions with Bidentate Phosphine Ligands The 44 cve (cluster valence electrons) triangular platinum clusters [{Pt(PR3)}3(μ‐SMe)3]Cl (PR3 = PPh3, 2a ; P(4‐FC6H4)3, 2b ; P(n‐Bu)3, 2c ) were found to react with PPh2CH2PPh2 (dppm) in a degradation reaction yielding dinuclear platinum(I) complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PPh3, 3a ; P(4‐FC6H4)3, 3b ; P(n‐Bu)3; 3e ) and the platinum(II) complex [Pt(SMe)2(dppm)] ( 4 ), whereas the addition of PPh2CH2CH2PPh2 (dppe) to cluster 2a afforded a mixture of degradation products, among others the complexes [Pt(dppe)2] and [Pt(dppe)2]Cl2. On the other hand, the treatment of cluster 2a with PPh2CH2CH2CH2PPh2 (dppp) ended up in the formation of the cationic complex [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ). Furthermore, the terminal PPh3 ligands in complex 3a proved to be subject to substitution by the stronger donating monodentate phosphine ligands PMePh2 and PMe2Ph yielding the analogous complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PMePh2, 3c ; PMe2Ph, 3d ). NMR investigations on complexes 3 showed an inverse correlation of Tolmans electronic parameter ν with the coupling constants 1J(Pt,P) and 1J(Pt,Pt). All compounds were fully characterized by means of NMR and IR spectroscopy. X‐ray diffraction analyses were performed for the complexes [{Pt{P(4‐FC6H4)3}}2(μ‐SMe)(μ‐dppm)]Cl ( 3b ), [Pt(SMe)2(dppm)] ( 4 ), and [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ).  相似文献   

9.
The Reactivity of Dinuclear Platina‐β‐diketones with Phosphines: Diacetylplatinum(II) Complexes and Mononuclear Platina‐β‐diketones Addition of mono‐ and bidentate phosphines or of AsPh3 to the platina‐β‐diketone [Pt2{(COMe)2H}2(μ‐Cl)2] ( 1 ) followed by the addition of NaOMe at ?70 °C resulted in the formation of diacetyl platinum(II) complexes cis‐[Pt(COMe)2L2] (L = PPh3, 2a ; P(4‐FC6H4)3, 2b ; PPh2(4‐py), 2c ; PMePh2, 2d ; AsPh3, 2d ) and [Pt(COMe)2(L??L)] (L??L = dppe, 3b ; dppp, 3c ), respectively. The analogous reaction with dppm afforded the dinuclear complex cis‐[{Pt(COMe)2}2(μ‐dppm)2] ( 4 ) that reacted in boiling acetone yielding [Pt(COMe)2(dppm)] ( 3a ). The reactions 1 → 2 / 3 were found to proceed via thermally highly unstable cationic mononuclear platina‐β‐diketone intermediates [Pt{(COMe)2H}L2]+ and [Pt{(COMe)2H}(L??L)]+, respectively, that could be isolated as chlorides for L??L = dppe ( 5a ) and dppp ( 5b ). The reversibility of the deprotonation of type 5 complexes with NaOMe yielding type 3 complexes was shown by the protonation of the diacetyl complex 3b with HBF4 yielding the platina‐β‐diketone [Pt{(COMe)2H}(dppe)](BF4) ( 5c ). All compounds were fully characterized by means of NMR and IR spectroscopies, and microanalyses. X‐ray diffraction analysis was performed for the complex cis‐[Pt(COMe)2(PPh3)2]·H2O·CHCl3 ( 2a ·H2O·CHCl3).  相似文献   

10.
Ruthenium(II) Complexes containing pyrimidine‐2‐thiolate (pymS) and bis(diphenylphosphanyl)alkanes [Ph2P–(CH2)m–PPh2, m = 1, dppm; m = 2, dppe; m = 3, dppp; m = 4, dppb] are described. Reactions of [RuCl2L2] (L = dppm, dppp) and [Ru2Cl4L3] (L = dppb) with pyrimidine‐2‐thione (pymSH) in 1:2 molar ratio in dry benzene in the presence of Et3N base yielded the [Ru(pymS)2L] complexes (pymS = pyrimidine‐2‐thiolate; L = dppm ( 1 ); dppp ( 3 ); dppb ( 4 )). The complex [Ru(pymS)2(dppe)] ( 2 ) was indirectly prepared by the reaction of [Ru(pymS)2(PPh3)2] with dppe. These complexes were characterized using analytical data, IR, 1H, 13C, 31P NMR spectroscopy, and X‐ray crystallography (complex 3 ). The crystal structure of the analogous complex [Ru(pyS)2(dppm)] ( 5 ) with the ligand pyridine‐2‐thiolate (pyS) was also described. X‐ray crystallographic investigation of complex 3 has shown two four‐membered chelate rings (N, S donors) and one six‐membered ring (P, P donors) around the metal atom. Compound 5 provides the first example in which RuII has three four‐membered chelate rings: two made up by N, S donor ligands and one made up by P, P donor ligand. The arrangement around the metal atoms in each complex is distorted octahedral with cis:cis:trans:P, P:N, N:S, S dispositions of the donor atoms. The 31P NMR spectroscopic data revealed that the complexes are static in solution, except 2 , which showed the presence of more than one species.  相似文献   

11.
The coordination properties of N,N′‐bis[4‐(4‐pyridyl)phenyl]acenaphthenequinonediimine (L1) and N,N′‐bis[4‐(2‐pyridyl)phenyl]acenaphthenequinonediimine (L2) were investigated in self‐assembly with palladium diphosphane complexes [Pd(P^P)(H2O)2](OTf)2 (OTf=triflate) by using various analytical techniques, including multinuclear (1H, 15N, and 31P) NMR spectroscopy and mass spectrometry (P^P=dppp, dppf, dppe; dppp=bis(diphenylphosphanyl)propane, dppf= bis(diphenylphosphanyl)ferrocene, and dppe=bis(diphenylphosphanyl)ethane). Beside the expected trimeric and tetrameric species, the interaction of an equimolar mixture of [Pd(dppp)]2+ ions and L1 also generates pentameric aggregates. Due to the E/Z isomerism of L1, a dimeric product was also observed. In all of these species, which correspond to the general formula [Pd(dppp)L1]n(OTf)2n (n=2–5), the L1 ligand is coordinated to the Pd center only through the terminal pyridyl groups. Introduction of a second equivalent of the [Pd(dppp)]2+ tecton results in coordination to the internal, sterically more encumbered chelating site and induces enhancement of the higher nuclearity components. The presence of higher‐order aggregates (n=5, 6), which were unexpected for the interaction of cis‐protected palladium corners with linear ditopic bridging ligands, has been demonstrated both by mass‐spectrometric and DOSY NMR spectroscopic analysis. The sequential coordination of the [Pd(dppp)]2+ ion is attributed to the dissimilar steric properties of the two coordination sites. In the self‐assembled species formed in a 1:1:1 mixture of [Pd(dppp)]2+/[Pd(dppe)]2+/L1, the sterically more demanding [Pd(dppp)]2+ tectons are attached selectively to the pyridyl groups, whereas the more hindered imino nitrogen atoms coordinate the less bulky dppe complexes, thus resulting in a sterically directed, size‐selective sorting of the metal tectons. The propensity of the new ligands to incorporate hydrogen‐bonded solvent molecules at the chelating site was confirmed by X‐ray diffraction studies.  相似文献   

12.
《Polyhedron》1999,18(8-9):1141-1145
Exchange reactions of trans-[PdXPh(SbPh3)2] (1) (X=Cl or Br) with ligands L in refluxing dichloromethane give the palladium phenyl complexes [PdXPhL2] (X=Cl, L=PPh3, AsPh3, L2=2,2′-bipyridine (bipy), 4,4′-dimethyl-2,2′-bipyridine (dmbipy), 1,10-phenanthroline (phen); X=Br, L=PPh3, L2=bipy). Treatment of the complexes with bis(diphenylphosphino)methane (dppm) in refluxing dichloromethane gives [PdXPh(dppm]2. These complexes have been characterised by microanalysis, IR and 1H NMR spectroscopic data together with single crystal X-ray determinations of the phenyl palladium complexes, trans-[PdClPh(PPh3)2], [PdClPh(bipy)], [PdClPh(dppm)]2, and [PdBrPh(dppm)]2.  相似文献   

13.
The synthesis and characterization of several new ruthenium complexes containing heterocyclic thiolate ligands are described. CpRu(PPh3)2Cl reacts with thiolate anions to give CpRu(PPh3)2SR, (1) [R = 2-mercaptobenzimidazolyl (a), 2-mercaptobenzothiazolyl (b), and 2-mercaptobenzoxazolyl (c)] in good yields. The CpRu(PPh3)-(CO)SR (2) complexes are obtained by treating (1) with CO gas in THF at room temperature. The one-pot reaction of CpRu(PPh3)2Cl, thiolate anions with chelate bisphosphine ligands (P–P), gave CpRu(P–P)SR where P–P = Ph2PCH2PPh2 (dppm) (3); Ph2PCH2CH2PPh2 (dppe) (4).  相似文献   

14.
The synthesis of mononuclear palladium(II) complexes containing chelating heterocyclic thionates is described. The new compounds of general formula cis-[Pd(RS-N)(L) x ](ClO4) [x = 2, L = PPh3, RS-N = pyridine-2-thionate (py2S) (1), pyrimidine-2-thionate (pym2S) (2), imidazolidine-2-thionate (imzdS) (3), 1-methylimidazoline-2 thionate (mimzS) (4), 1,3-thiazoline-2-thionate (tzdS) (5); x = 1, L = dppe, RS-N = pyridine-2-thionate (py2S) (6), pyrimidine-2-thionate (pym2S) (7), imidazolidine-2-thionate (imzdS) (8), 1-methylimidazole-2 thionate (mimzS) (9) and 1,3-thiazoline-2-thionate (tzdS) (10)] were prepared by directly reacting the hydroxo-complexes [{Pd(PPh3)2(-OH) }2](ClO4)2 and [ {Pd(dppe)(-OH) }2](ClO4)2 with the corresponding heterocyclic thiones (RS-N)H. The complexes have been characterized by partial elemental analyses, conductance measurements and spectroscopic methods (I.r., FAB, 1H- and 31P-n.m.r.). No evidence for monomer-dimer equilibrium was found in solution. The crystal structure of (2) has been determined by X-ray diffraction analysis.  相似文献   

15.
The sulfurization of DmpGeH3 (Dmp=2,6‐dimesitylphenyl) afforded the trinuclear germanium sulfide [DmpGe(μ‐S)]2(μ‐S)2Ge(SH)‐Dmp and a series of polythiadigermabicyclo[x.1.1]alkanes (x=3, 4, 5). The reduction of the S? S bonds of these germabicycloalkanes by NaBH4 at 0 °C afforded the dinuclear mercaptogermane syn‐[DmpGe(SH)(μ‐S)2Ge(SH)‐Dmp] ( 5 ) in good yield. The reaction of [Pd(dppe)Cl2] (dppe=1,2‐bis(diphenylphosphanyl)ethane) and the dilithium salt of 5 prepared in situ by the addition of nBuLi (2 equiv) gave the Ge2PdS4 cluster [DmpGe(μ‐S)]2[(μ‐S)2Pd(dppe)], in which the dithiadigermetanedithiolate is bound to the Pd atom at the two thiolato sulfur atoms. The same reaction with [Pd(PPh3)2Cl2] gave another Ge2PdS4 cluster, [DmpGe(μ‐S)]2[(μ‐S)2Pd(PPh3)], but with the dithiadigermetanedithiolate and the Pd center conjoined through a μ‐S atom between the two germanium atoms in addition to the two thiolato sulfur atoms to form a highly distorted cluster core. The formation of two different types of Ge2PdS4 clusters represents the usefulness of 5 in the synthesis of various polynuclear complexes composed of germanium and transition metals.  相似文献   

16.
Three new oxime‐based palladacycles, namely [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(dppm)]ClO4 ( 1 ), [Pd2{C,N‐C6H4{C(Me)?NOH}‐2}2(dppe)2(μ‐dppe)](ClO4)2 ( 2 ) and [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(dppmS2)]ClO4 ( 3 ), were synthesized by the reaction of dinuclear oxime complex [Pd{C,N‐C6H4{C(Me)?NOH}‐2}(μ‐Cl)]2 with different diphosphine ligands (dppm, dppe and dppmS2). The synthesized complexes were characterized using Fourier transform infrared, 31P NMR, 1H NMR and 13C NMR spectroscopic methods and elemental analyses, and their molecular structures were elucidated using X‐ray crystallography. The structure of 2 is worthy of note as it is the first oxime palladacycle where there are both bridging (P–) and chelating (P^P) dppe ligands, giving rise to a dinuclear complex. The palladium atom is in a five‐coordinate, square pyramidal P3NC environment, while in 3 the palladium atom is in a distorted square planar environment, coordinated by the oxime ligand and a chelating (S^S) dppmS2 ligand. These complexes were employed as efficient catalysts for the Suzuki–Miyaura cross‐coupling reaction of several aryl bromides with phenylboronic acid. The in vitro cytotoxicity of the compounds was also evaluated against human tumour cell lines (HT29, A549 and HeLa) using the MTT assay method. The results indicate that the dinuclear complex 2 has greater catalytic and anticancer activity in comparison with the mononuclear complexes 1 and 3 .  相似文献   

17.
The series of platinum(II), palladium(II), and nickel(II) complexes [ML2(dppe)] [M = Ni, Pd, Pt; L = 4–SC5H4N or 4–SC6H4OMe; dppe = Ph2PCH2CH2PPh2] containing pyridine-4-thiolate or 4-methoxybenzenethiolate ligands, together with the corresponding gold(I) complexes [AuL(PPh3)], were prepared and their electrospray ionization mass spectrometric behavior compared with that of the thiophenolate complexes [M(SPh)2(dppe)] (M = Ni, Pd, Pt) and [Au(SPh)(PPh3)]. While the pyridine-4-thiolate complexes yielded protonated ions of the type [M + H]+ and [M + 2H]2+ ions in the Ni, Pd, and Pt complexes, an [M + H]+ ion was only observed for the platinum derivative of 4-methoxybenzenethiolate. Other ions, which dominated the spectra of the thiophenolate complexes, were formed by thiolate loss and aggregate formation. The X-ray crystal structure of [Pt(SC6H4OMe–4)2(dppe)] is also reported.  相似文献   

18.
The reactions of PdCI2(L-L) [L-L = Ph2PCH2PPh2(dppm), Ph2PCH2CH2PPh2(dppe) and Ph2PCH2CH2CH2PPh2(dppp)] with equivalent amount of (Ph2P(S)NHP(S)Ph2)(dppaS2) gave the complexes [Pd(L-L)(dppaS2-H)]ClO4 [L-L = dppm (1), dppe (2), dppp (3)]. The different synthetic route was used for complex 2 by using of Pd(dppe)Cl2 and K[N(PSPh2)2] as starting materials (2a). All of these complexes have been characterized 31P{1H} NMR, IR and elemental analyses. The complexes 2, 2a and 3 were crystallographically characterized. The coordination geometry around the Pd atoms in these complexes distorted square planar. Six membered dppaS2-H rings are twist boat conformations in three complexes.  相似文献   

19.
Six heterothiometalic clusters, namely, [WS4Cu4(dppm)4](ClO4)2 · 2DMF · MeCN ( 1 ), [MoS4Cu4(dppm)4](NO3)2 · MeCN ( 2 ) [MoS4Cu3(dppm)3](ClO4) · 4H2O ( 3 ), [WS4Cu3(dppm)3](NO3) · 4H2O ( 4 ), [WS4Cu3(dppm)3]SCN · CH2Cl2 ( 5 ), and [WS4Cu3(dppm)3]I · CH2Cl2 ( 6 ) [dppm = bis (diphenylphosphanyl)methane] were synthesized. Compounds 1 – 4 were obtained by the reactions of (NH4)2MS4 (M = Mo, W) with [Cu22‐dppm)2(MeCN)2(ClO4)2] {or [Cu(dppm)(NO3)]2} in the presence of 1,10‐phen in mixed solvent (CH3CN/CH2Cl2/DMF for 1 and 2 , CH2Cl2/CH3OH/DMF for 3 and 4 . Compounds 5 and 6 were obtained by one‐pot reactions of (NH4)2WS4 with dppm and CuSCN (or CuI) in CH2Cl2/CH3OH. These clusters were characterized by single‐crystal X‐ray diffraction as well as IR, 1H NMR, and 31P NMR spectroscopy. Structure analysis showed that compounds 1 and 2 are “saddle‐shaped” pentanuclear cationic clusters, whereas compounds 3 – 6 are “flywheel‐shaped” tetranuclear cationic clusters. In 1 and 2 , the MS42– unit (M = W, Mo) is coordinated by four copper atoms, which are further bridged by four dppm molecules. In compounds 3 – 6 , the MS42– unit is coordinated by three copper atoms and each copper atom is bridged by three dppm ligands.  相似文献   

20.
The indenyl ruthenium thiolate complexes IndRu(PPh3)2SR, (1) [Ind = η5-C9H7; R = Pr n (a), Ph (b), CH2Ph(c)] were prepared directly by reacting the thiolate anions (RS) with IndRu(PPh3)2Cl. The one-pot reaction of IndRu(PPh3)2Cl, thiolate anions and dppa ligands gave IndRu(dppa)SR [dppa= bis(diphenylphosphino)ethane: dppe (2); bis(diphenylphosphino)methane: dppm (3)]. Complexes (1) readily react with NOBF4 in THF at room temperature to give [IndRu(PPh3)(NO)SR]BF4, (4). Complexes (1)–(4) have been characterized by spectroscopic techniques (i.r.,1H-n.m.r., 31P-n.m.r.) and by elemental analysis. The crystal structure of IndRu(dppe)SC6H5, (2b) has been determined by X-ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号