首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is challenging when it is directly applied to identify bacteria in water. This study demonstrates a rapid, sensitive, and selective technique for detection of Gram-positive bacteria in water. It involves a combination of membrane filtration (MF) and vancomycin-conjugated magnetite nanoparticles (VNPs) to selectively separate and concentrate Gram-positive bacteria in tap water and reservoir water, followed by rapid analysis of the isolates using whole-cell MALDI-MS. VNPs specifically recognize cells of Gram-positive bacteria, which serves as a basis for affinity capture of target Gram-positive bacteria. A two-step procedure of surface modification of bare magnetite nanoparticles was applied to synthesize VNPs. MF prior to VNP-based magnetic separation can effectively increase the enrichment factor and detection sensitivity and reduce time-consuming culture steps and the matrix effect for analysis of bacteria in MALDI-MS. The enrichment factor for the MF-VNP technique is about 6 × 104. A variety of bacteria, including Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, and Enterococcus faecium, were successfully analyzed from aqueous solutions and their mixtures with Gram-negative bacteria. The optimal conditions of the VNP/MALDI-MS technique, including selection of the MALDI matrix, the choice of cell-washing solution, and the VNP concentration, were also investigated. The capture efficiencies of Gram-positive bacteria with VNPs were 26.7–33.3%. The mass variations of characteristic peaks of the captured bacteria were within ±5 Da, which indicated good reproducibility of the proposed technique. The technique was applied to detect Gram-positive bacteria in tap water and reservoir water with an analysis time of around 2 h. The detection limit for Bacillus cereus, Enterococcus faecium, and Staphylococcus aureus was 5 × 102 cfu/ml for 2.0-l water samples.  相似文献   

2.
Shuping Li  Ying Liu  Hui Kim Hui 《Talanta》2009,80(1):313-320
Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is powerful in characterizing and identifying bacterial isolates. However, sufficient quantities of bacterial cells are required for generating MALDI mass spectra and a procedure to isolate and enrich target bacteria from sample matrix prior to MALDI-MS analysis is often necessary. In this paper, anion-exchange superparamagnetic nanoparticles (NPs), i.e., fluidMAG-DEAE and fluidMAG-Q, were employed to capture Aeromonas, Salmonella, Pseudomonas, Enterococcus, Bacillus, Staphylococcus and Escherichia coli from aqueous solutions and fresh water. The magnetically isolated bacteria were then characterized by whole cell MALDI-MS. The capture efficiency was found to be dependent on bacterial species, medium pH, the functional group and concentration of the NPs. The experimental results demonstrated that fluidMAG-DEAE and fluidMAG-Q were broad spectrum probes for bacteria. Furthermore, both dead and live bacteria could be captured by the NPs, and the live bacteria captured remained viable. Membrane filtration prior to the magnetic isolation could increase enrichment factor and eliminate potential matrix interference. A detection limit of 1 × 103 cfu/ml was achieved for the bacteria spiked in tap water and reservoir water, and the analytical time was around 2 h.  相似文献   

3.
Histamine poisoning is caused by the consumption of fish and other foods that harbor bacteria possessing histidine decarboxylase activity. With the aim of preventing histamine formation, highly specific mass spectral fingerprints were obtained from the 16 major biogenic amine‐producing enteric and marine bacteria by means of MALDI‐TOF MS analysis. All bacterial strains analyzed exhibited specific spectral fingerprints that enabled its unambiguous differentiation. This technique also identified peaks common to certain bacterial groups. Thus, two protein peaks at m/z 4182±1 and 8363±6 were found to be present in all Enterobacteriaceae species analyzed except for Morganella morganii. Peaks at m/z 3635±1 and 7267±2 were specific to both M. morganii and Proteus spp. Biogenic amine‐forming Proteus spp. exhibited three genus‐specific peaks at m/z 3980, 7960±1 and 9584±2. The genus Photobacterium also showed three genus‐specific peaks at m/z 2980±1, 4275±1 and 6578±1. The two histamine‐producing Gram‐positive bacteria Lactobacillus sp. 30A and Staphylococcus xylosus exhibited a few protein peaks in the 2000–7000 m/z range and could be easily distinguished from biogenic amine‐forming Gram‐negative bacteria. Clustering based on MALDI‐TOF MS also exhibited a good correlation with phylogenetic analysis based on the 16S rRNA gene sequence, validating the ability of the MALDI‐TOF technique to establish relationships between microbial strains and species. The approach described in this study leads the way toward the rapid and specific identification of major biogenic amine‐forming bacteria based on molecular protein markers with a goal to the timely prevention of histamine food poisoning.  相似文献   

4.
Concerns with water quality have increased in recent years, in part due to the more frequent contamination of water by pathogens like E. coli and L. pneumophila. Current methods for the typing of bacteria in water samples are based on culture of samples on specific media. These techniques are time‐consuming, subject to the impact of interferents and do not totally meet all the requirements of prevention. There is a need for accurate and rapid identification of these microorganisms. This report deals with the detection of bacteria, more precisely of Legionella spp., and the development of an analytical strategy for a rapid and unambiguous identification of these pathogens in water from diverse origins. Therefore, a protein mass mapping using matrix‐assisted laser desorption/ionisation mass spectrometry (MALDI MS) of whole bacteria combined with a home‐made database of bacteria spectra is applied. A large variety of different bacteria and microorganisms is used to approach the actual composition of samples with numerous interferents. The objective is to propose a universal method for sampling preparation before MALDI MS analysis and optimised spectrometric conditions for reproducible intense peaks. Several experimental factors known to influence signal quality such as time and media of culture have been studied. The proposed method gives promising results for a sure differentiation of Legionella species and subspecies and a rapid identification of bacteria which are the most dangerous or difficult to eradicate. This method is easy to perform with an excellent reproducibility. The analytical protocol and the corresponding database were validated on samples from different origins (cooling tower, plumbing hot water). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
We propose the benefits of preincubation during nanoparticle‐assisted bacterial analysis, where the bacteria are grown along with the nanoparticles. We were able to obtain a two to ten fold enhancement of bacterial signals in 3 h compared to the generally used methodology followed in previous literature. The previous literature method required a long time (18 h) to obtain such an enhancement. We probe the interactions of two bacteria, Staphylococcus aureus and Pseudomonas aeruginosa, with Ag, NiO, Pt TiO2 and ZnO nanoparticles via transmission electron microscopy, ultraviolet spectroscopy and matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Based on these results, we propose a mechanism for interaction of these five nanoparticles with bacteria. Two mechanisms were observed for the interactions: (1) Mechanism A is proposed for the Pt and NiO NPs which functioned based on affinity for bacterial cells. (2) Mechanism B was proposed for the bactericidal NPs such as TiO2, ZnO and Ag NPs. The results indicate that the success of the unmodified NPs in MALDI‐MS bacterial studies lies in following the ideal protocol for incubation at the ideal concentrations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Accurate and rapid determination of trypanosomatids is essential in epidemiological surveillance and therapeutic studies. Matrix‐assisted laser desorption ionization/time of flight mass spectrometry (MALDI‐TOF MS) has been shown to be a useful and powerful technique to identify bacteria, fungi, metazoa and human intact cells with applications in clinical settings. Here, we developed and optimized a MALDI‐TOF MS method to profile trypanosomatids. trypanosomatid cells were deposited on a MALDI target plate followed by addition of matrix solution. The plate was then subjected to MALDI‐TOF MS measurement to create reference mass spectra library and unknown samples were identified by pattern matching using the BioTyper software tool. Several m/z peaks reproducibly and uniquely identified trypanosomatids species showing the potentials of direct identification of trypanosomatids by MALDI‐TOF MS. Moreover, this method discriminated different life stages of Trypanosoma cruzi, epimastigote and bloodstream trypomastigote and Trypanosoma brucei, procyclic and bloodstream. T. cruzi Discrete Typing Units (DTUs) were also discriminated in three clades. However, it was not possible to achieve enough resolution and software‐assisted identification at the strain level. Overall, this study shows the importance of MALDI‐TOF MS for the direct identification of trypanosomatids and opens new avenues for mass spectrometry‐based detection of parasites in biofluids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Hepcidin is known to be a key systemic iron‐regulatory hormone which has been demonstrated to be associated with a number of iron disorders. Hepcidin concentrations are increased in inflammation and suppressed in hemochromatosis. In view of the role of hepcidin in disease, its potential as a diagnostic tool in a clinical setting is evident. This study describes the development of a matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) assay for the quantitative determination of hepcidin concentrations in clinical samples. A stable isotope labeled hepcidin was prepared as an internal standard and a standard quantity was added to urine samples. Extraction was performed with weak cation‐exchange magnetic nanoparticles. The basic peptides were eluted from the magnetic nanoparticles using a matrix solution directly onto a target plate and analyzed by MALDI‐TOF MS to determine the concentration of hepcidin. The assay was validated in charcoal stripped urine, and good recovery (70–80%) was obtained, as were limit of quantitation data (5 nmol/L), accuracy (RE <10%), precision (CV <21%), within ‐day repeatability (CV <13%) and between‐day repeatability (CV <21%). Urine hepcidin levels were 10 nmol/mmol creatinine in healthy controls, with reduced levels in hereditary hemochromatosis (P < 0.000005) and elevated levels in inflammation (P < 0.0007). In summary a validated method has been developed for the determination of hepcidin concentrations in clinical samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Glycosphingolipids (GSLs) play key roles in the manifestation of infectious diseases as attachment sites for pathogens. The thin‐layer chromatography (TLC) overlay assay represents one of the most powerful approaches for the detection of GSL receptors of microorganisms. Here we report on the direct structural characterization of microbial GSL receptors by employment of the TLC overlay assay combined with infrared matrix‐assisted laser desorption/ionization orthogonal time‐of‐flight mass spectrometry (IR‐MALDI‐o‐TOF‐MS). The procedure includes TLC separation of GSL mixtures, overlay of the chromatogram with GSL‐specific bacteria, detection of bound microbes with primary antibodies against bacterial surface proteins and appropriate alkaline phosphatase labeled secondary antibodies, and in situ MS analysis of bacteria‐specific GSL receptors. The combined method works on microgram scale of GSL mixtures and is advantageous in that it omits laborious and time‐consuming GSL extraction from the silica gel layer. This technique was successfully applied to the compositional analysis of globo‐series neutral GSLs recognized by P‐fimbriated Escherichia coli bacteria, which were used as model microorganisms for infection of the human urinary tract. Thus, direct TLC/IR‐MALDI‐o‐TOF‐MS adds a novel facet to this fast and sensitive method offering a wide range of applications for the investigation of carbohydrate‐specific pathogens involved in human infectious diseases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Fe3O4 nanoparticles were indirectly implanted onto functionalized multi‐walled carbon nanotubes (MWCNTs) leading to a nanocomposite with stronger magnetic performance. Poly(acrylic acid) (PAA) oligomer was first reacted with hydroxyl‐functionalized MWCNTs (MWCNTs‐OH) forming PAA‐grafted MWCNTs (PAA‐g‐MWCNTs). Subsequently, Fe3O4 nanoparticles were attached onto the surface of PAA‐g‐MWCNTs through an amidation reaction between the amino groups on the surface of Fe3O4 nanoparticles and the carboxyl groups of PAA. Fourier transform infrared spectra confirmed that the Fe3O4 nanoparticles and PAA‐g‐MWCNTs were indeed chemically linked. The morphology of the nanocomposites was characterized using transmission electron microscope (TEM). The surface and bulk structure of the nanocomposites were examined using X‐ray diffraction, X‐ray photoelectron spectrometer (XPS), and thermogravimetric analysis (TGA). The magnetic performance was characterized by vibrating sample magnetometer (VSM) and the magnetic saturation value of the magnetic nanocomposites was 47 emu g?1. The resulting products could be separated from deionized water under an external magnetic field within about 15 s. Finally, the magnetorheological (MR) performances of the synthesized magnetic nanocomposites and pure Fe3O4 nanoparticles were examined using a rotational rheometer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Astilbin, mainly isolated from a commonly used herbal medicine, Smilax glabra Roxb (SGR), exhibits a variety of pharmacological activities and biological effects. It is metabolized by intestinal bacteria after oral administration which leads to the variation of ethnopharmacological profile of this traditional medicine. However, little is known on the interactions of this active compound with intestinal bacteria, which would be very helpful in unravelling how SGR works. In this study, different pure bacteria from human feces were isolated and were used to investigate their conversion capability of astilbin. Ultra‐performance liquid chromatography/quadrupole‐time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS) technique combined with MetabolynxTM software was used to analyze astilbin and its metabolites. The parent compound and two metabolites (quercetin and eriodictyol) were detected in the isolated bacterial samples compared with blank samples. Quercetin was present in Enterococcus sp. 8B, 8–2 and 9–2 samples. Eriodictyol was only identified in Enterococcus sp. 8B sample. The metabolic routes and metabolites of astilbin produced by the different intestinal bacteria are reported for the first time. This will be useful for the investigation of the pharmacokinetic study of astilbin in vivo and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Enterococcus is a controversial genus due to its great variability; this genus includes pathogenic strains, spoilage strains, and apparently safe strains including some probiotic strains. Previous studies focused on the characterization of strains of Enterococcus spp. involved in nosocomial infections. However, little research has been conducted on Enterococcus strains in foodstuffs. In the present work, 36 strains of different species of Enterococcus have been characterized by means of MALDI‐TOF MS, resulting in highly specific mass spectral fingerprints. Characteristic peak masses common to certain bacterial species of Enterococcus have been identified. Thus, a peak at m/z 4426 ± 1 was assigned as a genus‐specific biomarker. In addition, phyloproteomic relationships based on the mass spectral data were compared to the results of a phylogenetic analysis based on the 16S rRNA gene sequence. A better grouping at the species level was observed in the phyloproteomic tree, especially for the Enterococcus faecium group. Presumably, the assortment of some strains or ecotypes could be related to their ecological niche specialization. The approach described in this study leads the way toward the rapid and specific identification of different strains and species of Enterococcus in food based on molecular protein markers, aiming at the early detection of pathogenic strains and strains implicated in food poisoning or food spoilage.  相似文献   

12.
Over the last few years, one of the most important and complex problems facing our society is treating infectious diseases caused by multidrug‐resistant bacteria (MDRB), by using current market‐existing antibiotics. Driven by this need, we report for the first time the development of the multifunctional popcorn‐shaped iron magnetic core–gold plasmonic shell nanotechnology‐driven approach for targeted magnetic separation and enrichment, label‐free surface‐enhanced Raman spectroscopy (SERS) detection, and the selective photothermal destruction of MDR Salmonella DT104. Due to the presence of the “lightning‐rod effect”, the core–shell popcorn‐shaped gold‐nanoparticle tips provided a huge field of SERS enhancement. The experimental data show that the M3038 antibody‐conjugated nanoparticles can be used for targeted separation and SERS imaging of MDR Salmonella DT104. A targeted photothermal‐lysis experiment, by using 670 nm light at 1.5 W cm?2 for 10 min, results in selective and irreparable cellular‐damage to MDR Salmonella. We discuss the possible mechanism and operating principle for the targeted separation, label‐free SERS imaging, and photothermal destruction of MDRB by using the popcorn‐shaped magnetic/plasmonic nanotechnology.  相似文献   

13.
Verticillium spp. have been listed by the European and Mediterranean Plant Protection Organization (EPPO) and China as plant quarantine pests. Although attempts have been made to develop a simple routine laboratory assay to detect these organisms, none are routinely used. We describe for the first time a robust assay for reliable identification of Verticillium spp. using protein fingerprinting data obtained by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry(MALDI‐TOF‐MS). Several sample preparation methods and matrices were investigated to improve mass spectra for the routine identification of six species of Verticillium spp.(Verticillium dahiliae, V. alboatrum, V. fungicola, V. nigrescens, and V. lecanii) by MALDI‐TOF‐MS. Using the optimized experimental method, we constructed a protein fingerprint database for six species of Verticillium and established a analysis criteria of log(Score). This MALDI‐TOF‐MS protocol should prove useful as a rapid and reliable assay for distinguishing different Verticillium spp. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In our previous studies, caudatin‐2,6‐dideoxy‐3‐O‐methy‐β‐d‐ cymaropyranoside (CDMC) was for the first time isolated from Cynanchum auriculatum Royle ex Wightand and was reported to possess a wide range of biological activities. However, the routes and metabolites of CDMC produced by intestinal bacteria are not well understood. In this study, ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) technique combined with MetabolynxTMsoftware was applied to analyze metabolites of CDMC by human intestinal bacteria. The incubated samples collected for 48 h in an anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF‐MS within 12 min. Eight metabolites were identified based on MS and MS/MS data. The results indicated that hydrolysis, hydrogenation, demethylation and hydroxylation were the major metabolic pathways of CDMC in vitro. Seven strains of bacteria including Bacillus sp. 46, Enterococcus sp. 30 and sp. 45, Escherichia sp. 49A, sp. 64, sp. 68 and sp. 75 were further identified using 16S rRNA gene sequencing owing to their relatively strong metabolic capacity toward CDMC. The present study provides important information about metabolic routes of CDMC and the roles of different intestinal bacteria in the metabolism of CDMC. Moreover, those metabolites might influence the biological effect of CDMC in vivo, which affects the clinical effects of this medicinal plant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Carbonyl‐reducing enzymes are important in both metabolism of endogenous substances and biotransformation of xenobiotics. Because sufficient amounts of native enzymes must be obtained to study their roles in metabolism, an efficient purification strategy is very important. Oracin (6‐[2‐(2‐hydroxyethyl)aminoethyl]‐5,11‐dioxo‐5,6‐dihydro‐11H‐indeno[1,2‐c] isoquinoline) is a prospective anticancer drug and one of the xenobiotic substrates for carbonyl‐reducing enzymes. A new purification strategy based on molecular recognition of carbonyl‐reducing enzymes with oracin as a ligand is reported here. The type of covalent bond, ligand molecules orientation, and their distance from the backbone of the solid matrix for good stearic accessibility were taken into account during the designing of the carrier. The carriers based on magnetically active microparticles were tested by recombinant enzymes AKR1C3 and CBR1. The SiMAG‐COOH magnetic microparticles with N‐alkylated oracin and BAPA as spacer arm provide required parameters: proper selectivity and specificity enabling to isolate the target enzyme in sufficient quantity, purity, and activity.  相似文献   

16.
The thermal stability of several commonly used crystalline matrix‐assisted ultraviolet laser desorption/ionization mass spectrometry (UV‐MALDI‐MS) matrices, 2,5‐dihydroxybenzoic acid (gentisic acid; GA), 2,4,6‐trihydroxyacetophenone (THA), α‐cyano‐4‐hydroxycinnamic acid (CHC), 3,5‐dimethoxy‐4‐hydroxycinnamic acid (sinapinic acid; SA), 9H‐pirido[3,4‐b]indole (nor‐harmane; nor‐Ho), 1‐methyl‐9H‐pirido[3,4‐b]indole (harmane; Ho), perchlorate of nor‐harmanonium ([nor‐Ho + H]+) and perchlorate of harmanonium ([Ho + H]+) was studied by heating them at their melting point and characterizing the remaining material by using different MS techniques [electron ionization mass spectrometry (EI‐MS), ultraviolet laserdesorption/ionization‐time‐of‐flight‐mass spectrometry (UV‐LDI‐TOF‐MS) and electrospray ionization‐time‐of‐flight‐mass spectrometry (ESI‐TOF‐MS)] as well as by thin layer chromatography analysis (TLC), electronic spectroscopy (UV‐absorption, fluorescence emission and excitation spectroscopy) and 1H nuclear magnetic resonance spectroscopy (1H‐NMR). In general, all compounds, except for CHC and SA, remained unchanged after fusion. CHC showed loss of CO2, yielding the trans‐/cis‐4‐hydroxyphenylacrilonitrile mixture. This mixture was unambiguously characterized by MS and 1H‐NMR spectroscopy, and its sublimation capability was demonstrated. These results explain the well‐known cluster formation, fading (vanishing) and further recovering of CHC when used as a matrix in UV‐MALDI‐MS. Commercial SA (SA 98%; trans‐SA/cis‐SA 5 : 1) showed mainly cis‐ to‐trans thermal isomerization and, with very poor yield, loss of CO2, yielding (3′,5′‐dimethoxy‐4′‐hydroxyphenyl)‐1‐ethene as the decarboxilated product. These thermal conversions would not drastically affect its behavior as a UV‐MALDI matrix as happens in the case of CHC. Complementary studies of the photochemical stability of these matrices in solid state were also conducted. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Piscirickettsia salmonis is a pathogenic bacteria known as the aetiological agent of the salmonid rickettsial syndrome and causes a high mortality in farmed salmonid fishes. Detection of P. salmonis in farmed fishes is based mainly on molecular biology and immunohistochemistry techniques. These techniques are in most of the cases expensive and time consuming. In the search of new alternatives to detect the presence of P. salmonis in salmonid fishes, this work proposed the use of MALDI‐TOF‐MS to compare serum protein profiles from Salmo salar fish, including experimentally infected and non‐infected fishes using principal component analysis (PCA). Samples were obtained from a controlled bioassay where S. salar was challenged with P. salmonis in a cohabitation model and classified according to the presence or absence of the bacteria by real time PCR analysis. MALDI spectra of the fish serum samples showed differences in its serum protein composition. These differences were corroborated with PCA analysis. The results demonstrated that the use of both MALDI‐TOF‐MS and PCA represents a useful tool to discriminate the fish status through the analysis of salmonid serum samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Summary: Novel non‐covalently connected water‐soluble nanoparticles that contain poly(fluorene‐co‐phenylene) with hydroxy‐capped alkoxy side chains (PF3BOH) and poly(acrylic acid) (PAA) have been obtained and characterized. With different proportions of PF3BOH and PAA, the shape and size of the nanoparticles can be regulated. The nanoparticles are quite stable in water with no precipitate being observed after weeks. Transmission electron microscopy and dynamic laser light scattering are used to confirm the morphology of the PF3BOH/PAA nanoparticles. Their optical properties have been investigated and show similar optoelectronic properties to a PF3BOH solid film although they do not undergo aggregation.

TEM images of the nanoparticles obtained upon varying the PAA/PF3BOH content.  相似文献   


19.
Fast and easy identification of fungal phytopathogens is of great importance in agriculture. In this context, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) has emerged as a powerful tool for analyzing microorganisms. This study deals with a methodology for MALDI‐TOF MS‐based identification of downy and powdery mildews representing obligate biotrophic parasites of crop plants. Experimental approaches for the MS analyses were optimized using Bremia lactucae, cause of lettuce downy mildew, and Oidium neolycopersici, cause of tomato powdery mildew. This involved determining a suitable concentration of spores in the sample, selection of a proper MALDI matrix, looking for the optimal solvent composition, and evaluation of different sample preparation methods. Furthermore, using different MALDI target materials and surfaces (stainless steel vs polymer‐based) and applying various conditions for sample exposure to the acidic MALDI matrix system were investigated. The dried droplet method involving solvent evaporation at room temperature was found to be the most suitable for the deposition of spores and MALDI matrix on the target and the subsequent crystallization. The concentration of spore suspension was optimal between 2 and 5 × 109 spores per ml. The best peptide/protein profiles (in terms of signal‐to‐noise ratio and number of peaks) were obtained by combining ferulic and sinapinic acids as a mixed MALDI matrix. A pretreatment of the spore cell wall with hydrolases was successfully introduced prior to MS measurements to obtain more pronounced signals. Finally, a novel procedure was developed for direct mass spectra acquisition from infected plant leaves. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
《先进技术聚合物》2018,29(8):2273-2280
Multiresponsive amphiphilic poly(N,N‐dimethylaminoethyl methacrylate)‐b‐poly(N‐isopropylacrylamide) (PDMAEMA‐b‐PNIPAM) was successfully synthesized by reversible addition‐fragmentation chain transfer polymerization. Poly(N,N‐dimethylaminoethyl methacrylate)‐b‐poly(N‐isopropylacrylamide) has thermal and pH stimuli responsiveness. Their lower critical solution temperature and hydrodynamic radius can be adjusted by varying the copolymer composition, block length, solution pH, and temperature. In addition, a convenient method has been established to prepare cross‐linked silica‐coated nanoparticles with PDMAEMA‐b‐PNIPAM micelles as a template, resulting in good organic/inorganic hybrid nanoparticles defined as 175 to 220 nm. The structure and morphology were characterized by proton nuclear magnetic resonance (1HNMR), Fourier‐transform infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), and transmission electron microscopy‐energy dispersive X‐ray spectroscopy (TEM‐EDS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号