首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Nonlinear LiKB4O7 single crystals have been grown by the Czochralski method from a stoichiometric melt. The optical, acoustic, piezo-and electro-optical, and thermal properties of these single crystals have been studied.  相似文献   

2.
The crack resistance and peculiarities of the internal structure of isostructural SrB4O7 and PbB4O7 single crystals of the framework type have been studied. It is shown that the cleavage of these crystals, which is atypical of this type and inherent in strontium and lead tetraborates, is due to the presence of boron-oxygen layers (bound by a relatively small number of covalent bonds) in their 3D boron-oxygen frameworks; crystals are cleaved along these layers. It is established that cracks propagate in SrB4O7 and PbB4O7 single crystals as a result of breakage of both the bonds between bridge atoms and the bonds in B3O3 boron-oxygen cycles—the main elements of the boron-oxygen framework. The break of bonds in the boron-oxygen cycles is explained by the presence of an unusual oxygen position in these cycles, which is shared by three boron-oxygen tetrahedra and whose B-O bonds are much weaker in comparison with the bonds typical of BO4 groups.  相似文献   

3.
The results of studying the temperature-induced polymorphic phase transformations in Cu1.50Zn0.30Te and Cu1.75Cd0.05Te single crystals are presented. The single crystals have been investigated in the range of 290–1100 K using X-ray diffraction analysis. The temperature dependences of the unit-cell parameters, X-ray density, and coefficients of thermal expansion for each polymorphic modification of Cu1.50Zn0.30Te and Cu1.75Cd0.05Te single crystals are presented. The influence of cationic substitution (replacement of Cu2+ with Zn2+ and Cd2+ cations) on the phase-formation processes, number of polymorphic modifications, and temperature of structural phase transition in single crystals of these solid solutions is demonstrated.  相似文献   

4.
For the first time, single crystals of the Cd0.75Sr0.25F2 solid solution with the fluorite structure are grown from melt by the Bridgman-Stockbarger method. The composition of these single crystals corresponds to the composition congruently melting at the minimum point on the phase diagram. The maximum diameter of the crystal is 50 mm; the maximum height is 30 mm. The vickers microhardness of the semitransparent crystals equals 191 ± 43 kg/mm2. The transmission cutoff in the IR range is ~10 μm.  相似文献   

5.
The structure of GdFe3(BO3)4 single crystals has been studied by X-ray diffraction at 293 and 90 K. The crystals are grown from a flux in the Bi2Mo3O12–B2O3–Li2MoO4–Gd2O3–Fe2O3 system. The results of chemical analysis and structural study show that these crystals contain bismuth as an impurity. It is found that bismuth atoms are located at gadolinium sites in the structure. A decrease in the temperature is accompanied by a lowering of the symmetry from sp. gr. R32 (at 293 K) to sp. gr. P3121 (at 90 K). The presence of two types of iron chains with different geometries at 90 K promotes a change in the magnetic properties of these crystals with a decrease in the temperature.  相似文献   

6.
The atomic structure of Li3.31Ge0.31P0.69O4 single crystals was refined based on high-precision X-ray diffraction data at 293 K. The characteristic features of the crystal structure are considered, and their influence on high ionic conductivity (Li+) of these crystals is discussed.  相似文献   

7.
Rb4LiH3(SeO4)4 single crystals (1) are studied by the X-ray diffraction method at 180 K and Rb4LiH3(SO4)4 single crystals (2a–2c) are studied by the neutron diffraction method at 298 K (2a and (2b) and 480 K (2c). It is established that isostructural single crystals 1 and 2 (sp. gr. P41) have analogous systems of hydrogen bonds: chains of four XO4 tetrahedra linked by three H bonds with the central bond (2.49 Å) being somewhat shorter than the terminal ones (2.52–2.54 Å). In the high-temperature 2c phase, the amplitudes of atomic thermal vibrations and the degree of proton disorder in the central hydrogen bond have somewhat elevated values.  相似文献   

8.
Sodium-and silver-ion exchange in single crystals of two polymorphous modifications of the Na3Sc2(PO4)3 compound has been studied. It is established that in the process of ion exchange, the samples undergo phase transitions similar to the well-known temperature transformations observed in these systems. It is shown that the phases with ferroelectric, ionic, and superionic properties may simultaneously coexist in one sample.  相似文献   

9.
Bi12SiO20 crystals have been grown for the first time by the low-thermal gradient Czochralski technique in the 〈111〉 and 〈110〉 directions. The conditions for reproducible crystal growth with a high-quality polyhedral faceted front are found. The systematic features of shaping Bi12SiO20 and Bi12GeO20 crystals, grown by the low-thermal gradient Czochralski technique, are compared. The defect formation in these crystals is studied and their optical homogeneity is analyzed by interferometry.  相似文献   

10.
The formation of trigonal GdFe3(BO3)4 crystals in the Bi2Mo3O12-B2O3-Li2MoO4-Gd2O3-Fe2O3 system was studied. The flux compositions for which GdFe3(BO3)4 is the high-temperature phase with a wide range of crystallization were determined. The features of nucleation of these crystals and their growth near the phase boundary with α-Fe2O3 were analyzed. The growth of GdFe3(BO3)4 single crystals involving preliminary nonequilibrium crystallization of α-Fe2O3 is described.  相似文献   

11.
The growth striation of impurity segregation and electrical properties of Ga0.03In0.97Sb single crystals grown by the Czochralski method in an ultrasonic field have been investigated. It is established that ultrasonic irradiation of the melt during growth significantly decreases the growth striation (in particular, it eliminates striations spaced at a distance of more than 14 μm). The Ga0.03In0.97Sb single crystals grown in an ultrasonic field had a higher charge-carrier mobility and thermoelectric power in comparison with the single crystals grown without ultrasound.  相似文献   

12.
This paper reports on the results of precision X-ray structural investigations of a RbTi0.98Zr0.02OPO4 single crystal at temperatures of 293 and 105 K. It is established that the observed decrease in the temperature of the ferroelectric phase transition in RbTiOPO4 crystals doped with zirconium is associated with the increase in the Rb-O bond lengths. The structural factors responsible for the decrease in the electrical conductivity in these crystals are revealed. An analysis is made of the structure of the helical channels which in crystals of this family are considered to be a decisive factor for the manifestation of superionic conduction. It is shown that, in structures of the KTiOPO4 (KTP) type, the migration of ions in channels is most hindered inside the cavities.  相似文献   

13.
The unit-cell parameters of [NH2(CH3)2]MnCl3 · 2H2O crystals are determined by X-ray diffraction analysis and the velocities of longitudinal ultrasonic waves in these crystals are measured by the echo-pulse method in the temperature range 100–315 K. The coefficients of thermal expansion along the principal crystallographic axes are derived from the temperature dependences of the unit-cell parameters. The temperature dependences of the characteristics studied reveal kink anomalies at temperatures of ~125, 179, 203, 260, and 303 K. These anomalies are indicative of structural transformations in the [NH2(CH3)2]MnCl3 · 2H2O crystals, which may be related to the dynamics of dimethylammonium cations.  相似文献   

14.
Large-diameter single crystals of TeO2 are grown by the Czochralski method in specially designed setups with automatic monitoring of the crystal growth. The degree of perfection of the grown crystals is examined using selective etching and X-ray topography (the Shultz method). The temperature dependence of the microhardness of TeO2 single crystals is investigated for different crystallographic planes, namely, (001), (100), and (110).  相似文献   

15.
A series of potassium titanyl phosphate single crystals doped with zinc (KTP: Zn) is grown by spontaneous flux crystallization. Their properties and the way the additive is implanted in the crystal lattice are studied. The inclusion of zinc atoms in the KTP structure is evidenced by the data of chemical analysis and the results of studies of electrophysical properties (the growth of conductivity and increase of relaxation anomalies). Precision X-ray diffraction studies of KTP: Zn single crystals reveal changes in the channel of the structure which correlate with the physical properties of this crystal series. No substitution of zinc atoms for titanium, phosphorus, or potassium atoms is found in the structure. Zinc atoms can be located at structural defects, domain walls, and the crystal surface.  相似文献   

16.
Single crystals of the anionic conductor La2Mo2O9 are grown by crystallization from a nonstoichiometric melt. Their polymorphism and domain structure, as well as the temperature dependences of conductivity and dielectric permittivity, are studied. In the temperature range 750–600°C, the conductivity of these crystals is as high as 10?1–10?2 Ω?1 cm?1.  相似文献   

17.
The structural state of a Ti50Ni47Fe3 single crystal irradiated by fast neutrons (F = 2.5 × 1020 cm−2) at 340 K was studied by thermal neutron diffraction at 78 and 295 K. The melt of this composition was chosen with the purpose of designing a radiation-resistant material exhibiting a shape-memory effect. It was found that the melt remains crystalline after irradiation, whereas the Ti49Ni51 crystal studied earlier becomes amorphous after an analogous irradiation. In spite of the fact that the main structural motif of the crystal remains unchanged after irradiation, martensitic transformations in the crystal do not occur and, consequently, the shape-memory effect is not retained. The radiation resistance of this class of crystals was estimated.  相似文献   

18.
The growth of NH4Cl crystals and their trapping of copper impurity in the NH4Cl-CuCl2-H2O-CONH3 quaternary system have been experimentally studied. The epitaxial adsorption of copper complexes on (100) faces leads to a sharp decrease in the growth rate in good correspondence with the Bliznakov-Chernov equation. The copper impurity enters the crystal composition in amounts up to 6.5 mol %. The impurity distribution coefficient nonlinearly changes with the copper concentration in the solution: it is much larger than unity at low concentrations and sharply decreases with an increase in supersaturation. Such behavior is indicative of the adsorption mechanism of copper trapping by NH4Cl crystals. Single-crystal X-ray study shows that the impurity is incorporated in NH4Cl crystals in the form of oriented intergrowths of different complex coppercontaining compounds. The concentration and variety of impurity phases increase with an increase in the copper content in the solution and decrease with an increase in supersaturation. Heterogeneous 2D isomorphous trapping of copper impurity by NH4Cl crystals induces high (up to 60 MPa) internal stresses in them, as a result of which anomalous birefringence and splitting of crystals occur.  相似文献   

19.
Electrical conductivity σ of ScF3 single crystals (sp. gr. \(Pm\overline 3 m\), ReO3 structure type) has been studied by impedance spectroscopy and compared with the electrical conductivity of rare earth HoF3 (β-YF3 type) and LaF3 (tysonite type) trifluorides. ScF3 crystals obtained by Bridgman directional solidification have ionic conductivity σ = 4 × 10–8 S/cm at 673 K. It is smaller than the σ values for LaF3 (sp. gr. \(P\overline 3 c1\)) and HoF3 (sp. gr. Pnma) single crystals by a factor of 104–105. The low conductivity of ScF3 crystals is due to the weak coordinating ability (coordination number CN = 6) and low electronic polarizability (αcat = 1.1 Å3) of Sc3+ ions. Mobile VF+ vacancies and less mobile interstitial Vi- ions (defects are formed according to the Frenkel mechanism) are involved in the ion transport. HoF3 and LaF3 single crystals have a high coordinating ability (CN = 9 for Ho3+ and CN = 11 for La3+) and a high electronic polarizability of cations (αcat = 1.6–1.9 Å3 for Ho3+ and αcat = 2.2 Å3 for La3+). Only mobile VF+ vacancies (defects are formed according to the Schottky mechanism) are involved in ion transport.  相似文献   

20.
This paper reports on the results of the precision X-ray structural investigations of KTi0.96Zr0.04OPO4 single crystals at room temperature. It is established that the incorporation of zirconium atoms into the structure of KTiOPO4 (KTP) crystals does not lead to substantial changes in the framework structure and results only in an insignificant decrease in the scatter of the distances in the PO4 tetrahedra and the formation of more symmetric (TiZr)O6 octahedra as compared to the TiO6 octahedra. However, the incorporation of zirconium atoms into the KTP structure is accompanied by the redistribution of the electron density in the crystal as a whole, so that the electron density increases in the region of the positions occupied by the potassium atoms. This changes the nonlinear optical properties of the given series of crystals, which are estimated from the intensity of the second harmonic generation signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号