首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A refined sample preparation procedure for matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) was developed for the evaluation of the degree of substitution (DS) in partially depolymerised carboxymethyl cellulose (CMC). By adding ammonium sulphate to the sample mixture prior to the analysis, good quality mass spectra could be acquired. The usual time-consuming search for 'sweet-spots' at the crystalline rim of the MALDI target spot was also avoided. This quality improvement made it possible to investigate whether various positions on the target spot generated mass spectra in which the measured DS varied. The accuracy and reproducibility of the sample preparation procedure were tested by applying it on three commercial CMCs. The study shows that the DS values that were calculated from the spectra acquired from the centre region of the MALDI target spot were in better agreement with the DS provided by the supplier than were the values obtained from the large crystals at the target spot rim. This observation could be one reasonable explanation for the higher DS values reported in other publications. By applying our refined MALDI sample preparation procedure DS values that were in good agreement with the values provided by the manufacturer could be obtained. This indicates that MALDI-TOFMS of partially depolymerised CMCs can be used for an estimation of the DS as a complement to the more established methods, e.g. NMR, titrimetry, and chromatographic techniques.  相似文献   

2.
Atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap (AP-MALDI/QIT) mass spectrometry has been investigated for the analysis of polyethylene glycol (PEG 1500) and a hyperbranched polymer (polyglycidol) in the presence of alkali-metal salts. Mass spectra of PEG 1500 obtained at atmospheric pressure showed dimetallated matrix/analyte adducts, in addition to the expected alkali-metal/PEG ions, for all matrix/alkali-metal salt combinations. The relative intensities of the desorbed ions were dependent on the matrix, the alkali-metal salt added to aid cationisation and the ion trap interface conditions [capillary temperature, in-source collisionally-induced dissociation (CID)]. These data indicate that the adducts are rapidly stabilised by collisional cooling enabling them to be transferred into the ion trap. Experiments using identical sample preparation conditions were carried out on a vacuum MALDI time-of-flight (ToF) mass spectrometer. In all cases, vacuum MALDI-ToF spectra showed only alkali-metal/PEG ions and no matrix/analyte adducts. The tandem mass spectrometry (MS/MS) capability of the ion trap has been demonstrated for a lithiated polyglycol yielding a rich fragment-ion spectrum. Analysis of the hyperbranched polymer polyglycidol by AP-MALDI/QIT reveals the characteristic ion series for these polymers as also observed under vacuum MALDI-ToF conditions.  相似文献   

3.
Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) has been investigated as a tool for accurate determination of the molecular mass of synthetic analogues of prazosine, a molecule used for the treatment of hypertension. Samples were dissolved in methanol, mixed with mass calibration standards, and crystallised on the target with alpha-cyano-4-hydroxycinnamic acid as matrix. Acquisition of spectra was rapidly completed in reflectron mode, allowing high resolution (6000-10000) and sensitive (about 1-10 pmol of sample on target) determination of the synthetic products. The results show the effectiveness of MALDI-TOFMS for accurate mass determination of these fairly large molecules, which are otherwise difficult to analyse by other high-resolution mass spectrometric techniques.  相似文献   

4.
Insoluble or low solubility organometallic and coordination compounds have been characterised by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, with solvent-free sample preparation being the key step toward successful analysis.  相似文献   

5.
This study presents matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) as a powerful tool to analyze and characterize oligonucleotides covalently linked to a solid support during their synthesis. The analysis of the fragment ions generated either in negative or positive mode allows direct and easy access to the nucleotide sequence and identification of the internucleosidic linkage. The mechanisms of the fragmentation of the solid-supported oligonucleotides induced by MALDI-TOFMS are discussed. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

6.
The use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) for the quantitative determination of phospholipid (PL) molecular species has been problematic, due primarily to the formation of multiple signals (corresponding to the molecular ion and other adducts) for some classes of PL. For example, analysis of phosphatidylcholine (PC) yielded signals that corresponded to protonated and sodiated molecules in the MALDI spectrum. The resulting spectral overlap among various molecular species (e.g. [PC(16:0/18:2) + Na] and [PC(18:2/18:3)]) made it impossible to ascertain their relative amounts using this technique. Other spectral ambiguities existed among different structural isomers, such as PC(18:1/18:1) and PC(18:0/18:2). We determined that molecular species could be resolved by MALDI-TOFMS by first removing the polar head (e.g. phosphocholine) from the phospholipid to effect production of only the sodiated molecules of the corresponding diacylglycerols (DAGs). Analysis of the resulting spectrum allowed unequivocal determination of the molecular species profile of PC from potato tuber and soybean. Estimation of fatty acid composition based on the molecular species determined by MALDI-TOFMS analysis agreed with that from GC-FID analysis. Post-source decay (PSD) was used to resolve standard isomers of PC (e.g. 18:1/18:1 vs. 18:0/18:2). Our results indicated that PSD is a useful approach for resolving structural isomers of PL molecular species.  相似文献   

7.
Strains of certain plant pathogenic bacteria, in particular several pathovars of Pseudomonas syringae, are known to produce cyclic lipodepsipeptides (LDPs) endowed with peculiar structural features and noticeable biological activities. In this study, a mass spectrometry procedure is proposed for screening LDP-producing bacterial strains and for identifying and assessing individual LDPs. After matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) screening of thirteen P. syringae strains for LDP production, the extracts from culture filtrates of eight positive strains were subjected to electrospray mass spectrometry for the identification of LDPs. Five strains were found to produce two forms of syringomycins (SR-E and SR-G) and two forms of syringopeptin 25 (SP25A and SP25B); two strains produced SR-E, SR-G and a new form of SP22; one strain produced syringotoxin (ST) and syringostatin A (SS-A) in addition to SP25A and SP25B. The yield in culture of two major LPDs: SR-G (3.2-13.8 mg x L(-1)) and SP25A (41.6-231.5 mg x L(-1)) was assessed by and high-performance liquid chromatography with electrospray mass spectrometry (HPLC/ESI-MS) in both scan and single ion monitoring (SIM) modes. Results of this investigation showed that the mass spectrometry protocol developed here is a precise and reliable method for screening bacterial strains for LDP production and for assessing the amount of each metabolite under various culture conditions. This could be of practical value in view of potential applications, e.g. biocontrol of post-harvest fungal diseases.  相似文献   

8.
Transition-metal acetylacetonate complexes of the form Metal(acac)(2), where Metal = Fe(II), Co(II), Ni(II), Cu(II), and Zn(II), and Metal(acac)(3), where Metal = V(III), Cr(III), Mn(III), Fe(III), and Co(III), were investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The data was acquired using the aprotic, electron transfer matrix, 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), and the observation of positive radical ions is shown clearly to depend on the metal element and the oxidation state it occupies. The ionization energy of DCTB was calculated to be 8.08 eV by density functional theory methods, which is notably lower than the experimental value, but within the range of other computational values. This value is very close to those of the analytes, so the existing electron transfer mechanism which is based on the ionization energies of the matrix and analyte, cannot be used predictively. Similarly, the data neither proves nor disproves the validity of the existing electron transfer ionization mechanism, with respect to metal coordination complexes without strong chromophores. In this case, periodic trends may be more useful in explaining the observed species and the prediction of species from sets of similar complexes. The addition of a sodium salt benefits the MALDI-TOFMS characterization of certain compounds studied, but the benefit of the addition of ammonium or silver salts is negligible.  相似文献   

9.
Methyl cellulose (MC) was partially depolymerised and the oligomers thus obtained were studied by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The depolymerisation was either enzymatic or acidic. Fractions of enzymatically depolymerised MC were collected from size-exclusion chromatography and subjected to a sample preparation investigation. Several MALDI matrices and solvents were evaluated. The results showed that the solvent choice had a significant effect on the measured degree of substitution (DS). Aprotic solvents produced higher DS values, which was most likely due to poor solubility of species with low DS. The obtained signal intensity, however, did not correlate with the solubility but seemed to be more dependent on certain matrix/solvent combinations. All the matrices attempted produced mass spectra with sufficient signal intensity for accurate peak area calculation. The choice of matrix did not have any significant effect on the measured DS. Sample spots obtained from organic solvents had a more homogeneous distribution of the analyte and smaller crystals than those obtained from water. This increased both the reproducibility and peak resolution and in addition the analysis time was shorter. DS measurements were performed on two acidically depolymerised MCs with different nominal DS values. It was easy to distinguish between the two MCs, and the measured DS values agreed well with the values supplied by the manufacturers.  相似文献   

10.
Isocyanates are an important class of compounds in occupational hygiene monitoring due mainly to their behaviour as respiratory sensitisers. Here, we demonstrate the application of matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) and MALDI tandem mass spectrometry (MS-MS) to the analysis of derivatised isocyanate monomers and prepolymers. The aim of the work has been to gauge the selectivity obtainable from the direct analysis of isocyanate mixtures without prior separation. Monomeric and prepolymeric isocyanate mixtures were analysed as their 1-(2-methoxyphenyl) piperazine derivatives and the potential of MALDI time-of-flight (ToF)-MS for an NCO monitoring program was assessed. The results obtained demonstrated the possibility of direct mixture analysis by this method. MALDI-MS-MS was used for the elucidation of fragment structures in the prepolymer samples. The developed methodology was then applied to the analysis of swabs from an occupational hygiene monitoring scheme and enabled the identification of the isocyanate species detected.  相似文献   

11.
Sample preparation effects in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) of partially depolymerised carboxymethyl cellulose (CMC) have been investigated. The depolymerisation was either enzymatic or acidic. Fractions of enzymatically depolymerised CMC were collected from size-exclusion chromatography (SEC) and further investigated by MALDI-TOFMS. 2,5-Dihydroxybenzoic acid was used as matrix, dissolved in H(2)O due to the poor solubility of CMC in suitable organic solvents. The samples were dried by two methods, in ambient atmosphere and at reduced pressure. Under reduced pressure the sample spot homogeneity increased. This drying method, however, produced additional adduct peaks in the mass spectra originating from ion exchange on the CMC oligomers. Analysis of CMC could be performed in both negative and positive ion modes. Mass discrimination and variation in ionisation efficiency were demonstrated by comparing mass spectra with SEC data. Measurements of the degree of substitution (DS) were performed on three CMCs with different DS values, which were depolymerised in trifluoroacetic acid. The three CMCs were easily distinguished from one another, but the obtained DS values deviated from the values supplied by the manufacturer.  相似文献   

12.
The use of plasma volume expanders, especially those based on chemically modified polysaccharides such as hydroxyethyl starch, has found its way from the medical field to the athletic community in the everlasting drive for performance enhancement. As such, plasma volume expanders have been placed on the list of banned substances by the International Olympic Committee, and in turn require accurate and sensitive analytical tools for their detection in complex biological matrices. Here we present a relatively straightforward method for the detection of polysaccharide-based plasma volume expanders (PVE) in urine, based on the carefully controlled partial acid hydrolysis of urine (20 microL) in a total volume of 500 microL 4 M trifluoroacetic acid. Following the incubation (30 min at 100 degrees C) an aliquot of the hydrolysate is dried, re-suspended in the analytical matrix (e.g. 2,5-dihydroxybenzoic acid) and examined by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The obtained mass spectrometric profile reveals a high number of characteristic peaks in the mass range between 500 and 3000 Da, a region that in urine samples devoid of PVE appears relatively clean, and thus allows the unambiguous identification of the presence of such PVE. This approach is fast (the mass profile can be obtained within 90 min), highly sensitive (the effective sample amount on the MALDI target is equivalent to 100 nL urine), needs little sample handling (four steps), requires no derivatisation and is devoid of interference from other biomolecules. The approach has been worked-out for hydroxy ethyl starch but can be applied to other polymer-derived plasma expanders such as dextran and probably the newly developed acetyl starch.  相似文献   

13.
This work presents a simple method for obtaining homogeneous sample surfaces in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) for the automated analysis of peptides and proteins. The sample preparation method is based on applying the sample/matrix mixture onto a pre-deposited highly diluted matrix spot. The pre-deposited crystals act as seeds for the new sample containing crystals which become much smaller in size and more evenly distributed than with conventional methods. This 'seed-layer' method was developed, optimised and compared with the dried-droplet method using peptides and proteins in the 1000-20,000 Da range. The seed-layer method increases the surface homogeneity, spot to spot reproducibility and sample washability as compared with the commonly used dried-droplet method. This methodology is applicable to alpha-cyanohydroxycinnamic acid, sinapinic acid and ferulic acid, which all form homogeneous crystal surfaces. Within-spot variation and between-spot variation was investigated using statistics at a 95% confidence level (n = 36). The statistical values were generated from more than 5000 data points collected from 500 spectra. More than 90% of the sample locations results in high intensity spectra with relatively low standard deviations (RSDs). Typically obtained data showed an RSD of 19-35% within a sample spot as well as in-between spots for proteins, and an RSD of < or = 50% for peptides. Linear calibration curves were obtained within one order of magnitude using internal calibration with a point-RSD of 3% (n = 10). The sample homogeneity allows mass spectra (average of 16 laser shots) to be obtained on each individual sample within 15 sec, whereby a 100 spot target plate can be run in 25 min. High density target plates using the seed-layer method were prepared by spotting approximately 100 picoliter droplets onto the target, resulting in sample spots < or = 500 microns in diameter using a flow-through piezo-electric micro-dispenser. By using this automated sample preparation step lower standard deviations are obtained in comparison to manually prepared samples.  相似文献   

14.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and laser desorption/ionization (LDI-)TOFMS have been used to characterize Suwannee River humic substances, obtained from the International Humic Substances Society (IHSS), and Armadale soil fulvic acid (ASFA). An array of MALDI matrices were tested for use with humic substances, including alpha-cyano-4-hydroxycinammic acid (CHCA), 2-(4-hydroxyphenylazo)benzoic acid (HABA), 2,5-dihydroxybenzoic acid (DHBA), sinapinic acid, dithranol and norharmane. DHBA yielded the best results, exhibiting superior ionization efficiency, low noise, broad applicability to the analytes of interest, and most importantly producing an abundance of high mass ions, the highest observed being m/z 1848. A number of sample preparation modes were investigated; the overlayer method improved sample/matrix homogeneity and hence shot-to-shot reproducibility. The choice of the matrix, mass ratio of analyte to matrix, and the sample preparation protocol, were found to be the most critical factors governing the quality of the mass spectra. Matrix suppression was greatly enhanced by ensuring good mixing of matrix and analyte in the solid phase, proper optimization of the matrix/analyte ratio, and optimizing delayed extraction to ensure complete matrix-analyte reaction in the plume before ions are moved to the flight tube. A number of common features, in particular specific ions which could not be attributed to the matrices or to contaminants, were present in the spectra of all the humic substances, regardless of origin or operational definition. Additionally, a prominent repeating pattern of peaks separated by 55, 114 and 169 Da was clearly observed in both LDI and MALDI, suggesting that the humic compounds studied here may have quasi-polymeric or oligomeric features.  相似文献   

15.
A novel method for acquisition and numerical analysis of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectral data is described. The digitized ion current transient from each consecutive laser shot is first acquired and stored independently. Subsequently, statistical correlation parameters between all stored transients are computed. We illustrate the uses of this event-by-event analysis method for studies of sample surface heterogeneity as well as for elucidating the mechanisms of ion formation in MALDI. Other potential applications of the method are also outlined.  相似文献   

16.
The intact fungal spores of several strains of four Aspergillus species, Aspergillus flavus, A. oryzae, A. parasiticus, and A. sojae, were directly analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. Very simple MALDI mass spectra are obtained by directly mixing spores with a matrix such as alpha-cyano-4-hydroxycinnamic acid or sinapinic acid. The mass spectra are obtained from the ablation of cell walls of spores owing to the acidity of the matrix solution. The MALDI results show that aflatoxigenic strains and non-aflatoxigenic strains have different mass peak profiles. Furthermore, the MALDI results of non-aflatoxigenic A. flavus and A. parasiticus spores resemble those of the closely related A. oryzae and A. sojae spores, respectively.  相似文献   

17.
Cereal varieties are normally identified using time-consuming methods such as visual examination of either the intact grain or one-dimensional electrophoretic patterns of the grain storage proteins. A fast method for identification of wheat (Triticum aestivum L.) varieties has previously been developed, which combines analysis of alcohol-soluble wheat proteins (gliadins) using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks. Here we have applied the same method for the identification of both barley (Hordeum vulgare L.) and rye (Secale cereale L.) varieties. For barley, 95% of the mass spectra were correctly classified. This is an encouraging result, since in earlier experiments only a grouping into subsets of varieties was possible. However, the method was not useful in the classification of rye, due to the strong similarity between mass spectra of different varieties.  相似文献   

18.
A method for the detection of BPDE-d guanosine adducts using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is described and illustrated. The results indicate that MALDI is capable of detecting two other DNA benzopyrene adducts, which are trace products formed during the synthesis of BPDE-d guanosine. This MALDI-TOFMS method offers the potential for the detection of DNA adducts in human tissue using very limited sample purification and preparation.  相似文献   

19.
The atmospheric-pressure matrix-assisted laser desorption/ionisation quadrupole ion trap (AP-MALDI-QIT) analysis of tryptic peptides is reported following capillary liquid chromatographic (LC) separation and direct analysis of a protein digest. Peptide fragments were identified by peptide mass fingerprinting from mass spectrometric data and sequence analysis obtained by tandem mass spectrometry of the principal mass spectral peaks using a data-dependent scanning protocol. These data were compared with those from mass spectrometric analysis using capillary LC/MALDI-time-of-flight (TOF) and capillary LC/electrospray ionisation (ESI)-quadrupole TOF. For all three configurations the resulting data were searched against the MSDB database, using MASCOT and the sequence coverage compared for each technique. Complementary data were obtained using the three techniques.  相似文献   

20.
Direct tandem mass spectrometric (MS/MS) analysis of small, singly charged protein ions by tandem time-of-flight mass spectrometry (TOFMS) is demonstrated for proteins up to a molecular mass of 12 kDa. The MALDI-generated singly charged precursor ions predominantly yield product ions resulting from metastable fragmentation at aspartyl and prolyl residues. Additional series of C-terminal sequence ions provide in some cases sufficient information for protein identification. The amount of sample required to obtain good quality spectra is in the high femtomolar to low picomolar range. Within this range, MALDI-MS/MS using TOF/TOF trade mark ion optics now provides the opportunity for direct protein identification and partial characterization without prior enzymatic hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号