首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many lab-scale studies have been carried out regarding the effect of feed strategy on the performance of anaerobic sequencing batch reactors (ASBR); however, more detailed pilot-scale studies should be performed to assess the real applicability of this type of operation. Therefore, the objective of this work was to assess the effect of feed strategy or fill time in a 1-m3 mechanically stirred pilot-scale sequencing batch reactor, treating 0.65 m3 sanitary wastewater in 8-h cycles at ambient temperature. Two reactor configurations were used: one containing granular biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam as inert support (denominated anaerobic sequencing batch biofilm reactor (AnSBBR)). The reactors were operated under five distinct feed strategies, namely: typical batch and fed-batch for 25%, 50%, 75%, and 100% of the cycle length. Stirring frequency in the ASBR was 40 rpm with two flat-blade turbine impellers and 80 rpm in the AnSBBR with two helix impellers. The results showed that both the ASBR and AnSBBR when operated under typical batch, fed-batch for 50% and 75% of the cycle length, presented improved organic matter removal efficiencies, without significant differences in performance, thus showing important operational flexibility. In addition, the reactors presented operation stability under all conditions.  相似文献   

2.
A mechanically stirred anaerobic sequencing batch reactor containing anaerobic biomass immobilized on polyurethane foam cubes, treating low-strength synthetic wastewater (500 mg COD L?1), was operated under different operational conditions to assess the removal of organic matter and sulfate. These conditions were related to fill time, defined by the following feed strategies: batch mode of 10 min, fed-batch mode of 3 h and fed-batch mode of 6 h, and COD/[SO4 2?] ratios of 1.34, 0.67, and 0.34 defined by organic matter concentration of 500 mg COD L?1 and sulfate concentrations of 373, 746, and 1,493 mg SO4 2? L?1 in the influent. Thus, nine assays were performed to investigate the influence of each of these parameters, as well as the interaction effect, on the performance of the system. The reactor operated with agitation of 400 rpm, total volume of 4.0 L, and treated 2.0 L synthetic wastewater in 8-h cycles at 30?±?1°C. During all assays, the reactor showed operational stability in relation to the monitored variables such as COD, sulfate, sulfide, sulfite, volatile acids, bicarbonate alkalinity, and solids, thus demonstrating the potential to apply this technology to the combined removal of organic matter and sulfate. In general, the results showed that the 3-h fed-batch operation with a COD/[SO4 2?] ratio of 0.34 presented the best conditions for organic matter removal (89%). The best efficiency for sulfate removal (71%) was accomplished during the assay with a COD/[SO4 2?] ratio of 1.34 and a fill time of 6 h. It was also observed that as fill time and sulfate concentration in the influent increased, the ratio between removed sulfate load and removed organic load also increased. However, it should be pointed out that the aim of this study was not to optimize the removal of organic matter and sulfate, but rather to analyze the behavior of the reactor during the different feed strategies and applied COD/[SO4 2?] ratios, and mainly to analyze the interaction effect, an aspect that has not yet been explored in the literature for batch reactors.  相似文献   

3.
The effect of temperature on the performance of an anaerobic sequencing biofilm batch reactor (ASBBR) with liquid-phase recirculation was assessed. Assays were performed using a recirculation velocity of 0.20 cm/s, 8-h cycles, and an average treated synthetic wastewater volume of 2 L/cycle with a concentration of 500 mg of Chemical Oxygen Demand (COD)/L. Operation temperatures were 15, 20, 25, 30, and 35°C. At 25, 30, and 35°C, organic matter removal efficiencies for filtered samples ranged from 81 to 83%. At lower temperatures, namely 15 and 20°C, removal efficiency decreased significantly to 61 and 65%, respectively. A first-order model could be fitted to the experimental concentration profile values. The first-order kinetic parameter value of this model varied from 0.46 to 0.81 h1 considering the lowest and highest temperature studied. Moreover, analysis of the removal profile values allowed fitting of an Arrhenius-type equation with an activation energy of 5715 cal/mol.  相似文献   

4.
An investigation was performed regarding the application of a mechanically stirred anaerobic sequencing batch biofilm reactor containing immobilized biomass on inert polyurethane foam (AnSBBR) to the treatment of soluble metalworking fluids to remove organic matter and produce methane. The effect of increasing organic matter and reactor fill time, as well as shock load, on reactor stability and efficiency have been analyzed. The 5-L AnSBBR was operated at 30?°C in 8-h cycles, agitation of 400 rpm, and treated 2.0 L effluent per cycle. Organic matter was increased by increasing the influent concentration (500, 1,000, 2,000, and 3,000 mg chemical oxygen demand (COD)/L). Fill times investigated were in the batch mode (fill time 10 min) and fed-batch followed by batch (fill time 4 h). In the batch mode, organic matter removal efficiencies were 87%, 86%, and 80% for influent concentrations of 500, 1,000, and 2,000 mgCOD/L (1.50, 3.12, and 6.08 gCOD/L.d), respectively. At 3,000 mgCOD/L (9.38 gCOD/L.d), operational stability could not be achieved. The reactor managed to maintain stability when a shock load twice as high the feed concentration was applied, evidencing the robustness of the reactor to potential concentration variations in the wastewater being treated. Increasing the fill time to 4 h did not improve removal efficiency, which was 72% for 2,000 mgCOD/L. Thus, gradual feeding did not improve organic matter removal. The concentration of methane formed at 6.08 gCOD/L was 5.20 mmolCH4, which corresponded to 78% of the biogas composition. The behavior of the reactor during batch and fed-batch feeding could be explained by a kinetic model that considers organic matter consumption, production, and consumption of total volatile acids and methane production.  相似文献   

5.
Textile and dye industries are main sources of dye bearing effluent. In present studies the anaerobic biological degradation of Acid Red 3BN dye water (AR3BNDW) and mixed dye water (MDW) for reduction of color and COD were studied in sequential batch reactor (SBR). The sludge as sources of microorganism was arranged from maize processing bio methanation wastewater treatment plant, which was acclimatized for treatment of AR3BNDW and MDW. After the acclimatization, dyes degradation were studied in SBR At optimum operation condition of hydraulics retention time (HRT) = 2.5 d, and treatment time (tR) = 16 h, AR3BNDW have gone maximum 87% color reduction of 500 mg/L dye, and 82.8% COD reduction of 380 mg/L COD. At same operating condition, 84.5% color reduction of 500 mg/L dye, and 79.42% COD reduction of 413 mg/L COD achieved for MDW. The second order Grau model was fitted well for COD and dye reductions. The kinetics parameter were evaluated for both the dye water.  相似文献   

6.
Sin  S. N.  Chua  H.  Lo  W.  Yu  P. H. F. 《Applied biochemistry and biotechnology》2000,84(1-9):487-500
The effects of copper, chromium, and zinc ions, at trace levels, on the performance of a simulated activated sludge process were investigated. The results of batch adsorption experiments showed that the adsorption of copper, chromium, and zinc ions followed both the Langmuir and Freundlich isotherms. The presence of trace levels of these three metals not only reduced the adsorption rate of organic matters but also the chemical oxygen demand adsorption capacity (CAC) of the activated sludge. Metal ions competed with the organic substrate for adsorption binding sites on the surfaces of activated sludge bioflocs and reduced the CAC. Studies performed in a sequential batch reactor (SBR) showed that the presence of trace levels of heavy metal ions in wastewater affected the SBR performance to different extents depending on the hydraulic retention time (HRT). When the reactors were operated at short HRTs of 2.5 d or less, the presence of trace levels of heavy metal ions reduced substantially the CAC of activated sludge, which, in turn, affected significantly the performance of the SBR. However, under longer HRTs (e.g., 5d), the heavy metal ions in the wastewater reduced the CAC but had not significant effect on the chemical oxygen demand removal efficiency.  相似文献   

7.
The stability and efficiency of an anaerobic reactor containing biomass immobilized on polyurethane foam were assessed. The reactor with mechanical stirring of 500 rpm and maintained at 30+/-1 degrees C treated synthetic wastewater with a concentration of approx 500 mg of chemical oxygen demand/L and was fed with different influent volumes and cycle times maintaining organic load. Operation was in batch mode with renewal of only part of the volume of wastewater to be treated; that is reactor discharge was not complete, but partial. The main operational characteristic investigated was the ratio of the volume of wastewater fed per cycle (VA) to the volume of wastewater in the reactor (VA) maintaining the same volumetric organic load. This way, operating flexibility could be verified in relation to the volume of treated wastewater at each cycle and the cycle time for the same organic load. The results indicated that the reactor was able to operate with different VA/Vu ratios with no significant loss in performance, thus allowing increased operational flexibility. For conditions in which VA was >or=50% of VA, removal efficiencies of filtered and nonfiltered organic matter were about 84 and 79%, respectively, whereas at conditions of higher initial influent dilution, these efficiencies were slightly lower, about 80 and 74%, respectively. At higher initial influent dilutions, it became difficult to maintain a constant reactor medium volume, owing to a high formation rate of viscous polymer-like material, likely of microbiologic origin.  相似文献   

8.
Oil refinery is one of the fast growing industries across the globe and it is expected to progress in the near future. The worldwide increase in the generation of refinery wastewater along with strict environmental regulations in the discharge of industrial effluent, persistent efforts have been devoted to recycle and reuse the treated water. The wastewater from the refining operation leads to serious environmental threat to the ecosystem. Therefore, this study aimed to synthesize silica (SiO2) and calcium carbonate nanoparticles (CaCO3) in the reduction of organics from refinery wastewater. The synthesized nanoparticles were employed in the reduction of chemical oxygen demand (COD) from refinery wastewater by studying the influence of solution pH, contact time, dosage of nanoparticles and stirring speed on adsorption performance. From the batch experimental studies, the optimized processing conditions for the reduction of COD using SiO2 nanoparticles are pH 4.0, dosage 0.5 g, stirring speed 125 rpm and 90 min stirring time, and the corresponding values for CaCO3 nanoparticles are pH 8.0, dosage 0.4 g, stirring speed 100 rpm and 90 min stirring time. The study demonstrates that SiO2 and CaCO3 nanoparticles have a promising future in the reduction organics from refinery wastewater in different pH regimes.  相似文献   

9.
A study was performed regarding the effect of the relation between fill time, volume treated per cycle, and influent concentration at different applied organic loadings on the stability and efficiency of an anaerobic sequencing batch reactor containing immobilized biomass on polyurethane foam with recirculation of the liquid phase (AnSBBR) applied to the treatment of wastewater from a personal care industry. Total cycle length of the reactor was 8 h (480 min). Fill times were 10 min in the batch operation, 4 h in the fed-batch operation, and a 10-min batch followed by a 4-h fed batch in the mixed operation. Settling time was not necessary since the biomass was immobilized and decant time was 10 min. Volume of liquid medium in the reactor was 2.5 L, whereas volume treated per cycle ranged from 0.88 to 2.5 L in accordance with fill time. Influent concentration varied from 300 to 1,425 mg COD/L, resulting in an applied volumetric organic load of 0.9 and 1.5 g COD/L.d. Recirculation flow rate was 20 L/h, and the reactor was maintained at 30 °C. Values of organic matter removal efficiency of filtered effluent samples were below 71% in the batch operations and above 74% in the operations of fed batch followed by batch. Feeding wastewater during part of the operational cycle was beneficial to the system, as it resulted in indirect control over the conversion of substrate into intermediates that would negatively interfere with the biochemical reactions regarding the degradation of organic matter. As a result, the average substrate consumption increased, leading to higher organic removal efficiencies in the fed-batch operations.  相似文献   

10.
The kinetics of cellulose hydrolysis under extremely low acid (ELA) conditions (0.07 wt%) and at temperatures >200°C was investigated using batch reactors and bed-shrinking flow-through (BSFT) reactors. The maximum yield of glucose obtained from batch reactor experiments was about 60% for α-cellulose, which occurred at 205 and 220°C. The maximum glucose yields from yellow poplar feedstockswere substantially lower, falling in the range of 26–50%. With yellow poplar feedstocks, a large amount of glucose was unaccounted for at the latter phase of the batch reactions. It appears that a substantial amount of released glucose condenses with nonglucosidic substances. in liquid. The rate of glucan hydrolysis under ELA was relatively insensitive to temperature in batch experiments for all three substrates. This contradicts the traditional concept of cellulose hydrolysis and implies that additional factors influence the hydrolysis of glucan under ELA. Inexperiments using BSFT reactors, the glucose yields of 87.5, 90,3, and 90.8% were obtained for yellow poplar feedstocks at 205, 220, and 235°C, respectively. The hydrolysis rate for glucan was about three times higher with the BSFT than with the batch reactors. The difference of observed kinetics and performance data between the BSFT and the batch reactors was far above that predicted by the reactor theory.  相似文献   

11.
A membrane reactor consisting of two recirculating flow systems connected via a membrane module has been constructed and used to study the dehydrogenation of cyclohexane. When the reactor is operated differentially it is possible to obtain the same information that is generated when using more conventional steady flow reactors. The batch system has the advantages of easily varying the ratio of membrane area to reactor volume and sampling a very wide range of effective Damköhler numbers. These are important variables in design studies. This ability has been demonstrated for the dehydrogenation of cyclohexane. The batch system reproduced results from studies using a more conventional flow reactor. In addition, with the batch reactor it was possible to experimentally confirm predictions that were based upon computer simulation but which were outside the range of experimental study for the conventional reactors used.  相似文献   

12.
The anaerobic treatment of soft drink wastewater (SDW) was studied in two laboratory reactors—a 1.8-L UASB reactor and a 3-L hybrid reactor-sludge bed containing a layer of polyurethane in the upper part, at 35°C. The highest organic loading rates (OLR) achieved were 13 and 16.5 g COD/L · D for hybrid and UASB reactors, respectively, with the treatment efficiency of about 80% for both reactors. Despite the higher treatment productivity achieved for the UASB reactor, its lower ability to generate a sufficient level of alkalinity led to difficulties in maintaining a stable operation performance. Therefore, the hybrid reactor seems to be indicated for OLR higher than 10 g COD/L · d and HRT lower than 1 D, from the point of view of reliability of these two systems. Both reactors can treat the SDW with pH influent up to 11.0. The feeding of reactors with higher pH influent values led to their quick failure because of alkali shock. The duration of the recovery period after alkali shock was about 1.5-2 mo.  相似文献   

13.
In chemical and biochemical processes, steady‐state models are widely used for process assessment, control and optimisation. In these models, parameter adjustment requires data collected under nearly steady‐state conditions. Several approaches have been developed for steady‐state identification (SSID) in continuous processes, but no attempt has been made to adapt them to the singularities of batch processes. The main aim of this paper is to propose an automated method based on batch‐wise unfolding of the three‐way batch process data followed by a principal component analysis (Unfold‐PCA) in combination with the methodology of Brown and Rhinehart 2 for SSID. A second goal of this paper is to illustrate how by using Unfold‐PCA, process understanding can be gained from the batch‐to‐batch start‐ups and transitions data analysis. The potential of the proposed methodology is illustrated using historical data from a laboratory‐scale sequencing batch reactor (SBR) operated for enhanced biological phosphorus removal (EBPR). The results demonstrate that the proposed approach can be efficiently used to detect when the batches reach the steady‐state condition, to interpret the overall batch‐to‐batch process evolution and also to isolate the causes of changes between batches using contribution plots. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
To improve the water quality in the shrimp aquaculture, a sequencing batch reactor (SBR) has been tested for the treatment of shrimp wastewater. A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same tank to take the place of multiple tanks in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor basin. This is achieved in a simple tank, through sequencing stages, which include fill, react, settle, decant, and idle. A laboratory scale SBR and a pilot scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentration of carbon and nitrogen. By operating the reactor sequentially, viz, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon in a laboratory scale SBR. To be specific, the initial chemical oxygen demand (COD) concentration of 1,593 mg/l was reduced to 44 mg/l within 10 days of reactor operation. Ammonia in the sludge was nitrified within 3 days. The denitrification of nitrate was achieved by the anaerobic process and 99% removal of nitrate was observed. Based on the laboratory study, a pilot scale SBR was designed and operated to remove excess nitrogen in the shrimp wastewater. The results mimicked the laboratory scale SBR.  相似文献   

15.
Aerobic biological treatment of opium alkaloid containing wastewater as well as the effect of gamma irradiation as pre-treatment was investigated. Biodegradability of raw wastewater was assessed in aerobic batch reactors and was found highly biodegradable (83–90% degradation). The effect of irradiation (40 and 140 kGy) on biodegradability was also evaluated in terms of BOD5/COD values and results revealed that irradiation imparted no further enhancement in the biodegradability. Despite the highly biodegradable nature of wastewater, further experiments in sequencing batch reactors (SBR) revealed that the treatment operation was not possible due to sludge settleability problem observed beyond an influent COD value of 2000 mg dm?3. Possible reasons for this problem were investigated, and the high molecular weight, large size and aromatic structure of the organic pollutants present in wastewater was thought to contribute to poor settleability. Initial efforts to solve this problem by modifying the operational conditions, such as SRT reduction, failed. However, further operational modifications including addition of phosphate buffer cured the settleability problem and influent COD was increased up to 5000 mg dm?3. Significant COD removal efficiencies (>70%) were obtained in both SBRs fed with original and irradiated wastewaters (by 40 kGy). However, pre-irradiated wastewater provided complete thebain removal and a better settling sludge, which was thought due to degradation of complex structure by radiation application. Degradation of the structure was observed by GC/MS analyses and enhancement in filterability tests.  相似文献   

16.
The influence of starvation (defined as the period without substrate) and shock loads on the performance of a moving bed sequencing batch reactor degrading 4-chlorophenol (4CP) were investigated. The biomass was acclimated to biodegrade 100 mg/L of 4CP, and the colonization of the packing material was followed. Two starvation periods and two shock loads were studied. The degradation capacity of the suspended and the attached biomass present on the moving bed was also evaluated. The experiments showed that, after the starvation period, the specific degradation rate decreased from 30.5 to 28.5 and 20 mg 4CP/gVSS/h, when starvation periods of 24 and 48 h were applied, respectively. When two concentration peaks of 500 and 1,050 mg/L were applied, a loss of 6% and 8% on the specific degradation rate, respectively, was also observed. The moving bed thus showed great robustness against starvation periods and shock loads. Suspended biomass presented higher specific degradation rates, but attached biomass did not generate a metabolite that is inhibitory when it accumulates.  相似文献   

17.
The performance of an anaerobic sequencing batch reactor (ASBR) was assessed when submitted to increasing organic load with different influent concentrations and cycle lengths. The 5-L mechanically stirred (75 rpm) ASBR contained 2 L of granular biomass and treated 2 L of synthetic wastewater per cycle. Volumetric organic loads (VOLs) from 0.66 to 2.88 g of chemical oxygen demand (COD)/(L x d) were applied by using influent concentrations from 550 to 3,600 mg of COD/L in 8- and 12-h cycles. Reactor stability was maintained for VOLs from 0.66 to 2.36 g of COD/(L x d), with organic matter removal efficiencies for filtered samples (epsilonF) between 84 and 88%. For VOLs from 0.78 to 2.36 g of COD/(L x d) at an influent concentration of 2,000 mg of COD/L, when cycle length was reduced from 12 to 8 h, epsilonF did not vary, yet showed a very distinct behavior from the other conditions. In addition, two operation strategies were studied for VOLs with approximately similar values of 2.36 and 2.08 g of COD/(L x d). One involved operation with an influent concentration of 2,000 mg of COD/L and an 8-h cycle, whereas the other involved an influent concentration of 2,600 mg of COD/L and a 12-h cycle. Only the former resulted in system stability and efficiency. These results indicate that besides organic load, influent concentration and cycle length play a significant role in ASBR systems.  相似文献   

18.
Operational practice of high-rate anaerobic bioreactors such as upflow anaerobic sludge bed (UASB) reactors is generally based on maximization of the biomass concentration and, in the case of more than one reactor compartment, operation in parallel. In this article, a modeling approach is used to postulate that the treatment performance of anaerobic bioreactors can be improved by simple operational measures. To achieve minimized effluent soluble substrate concentrations, operation of two reactors in series combined with active exchange of biomass between both reactors is suggested. In this way, substrate concentrations lower than the minimum achievable concentration in a completely mixed reactor can be achieved. It is furthermore suggested that maximized biomass concentrations (and solid retention times [SRTs]) do not necessarily lead to minimized effluent concentrations of organic material. At elevated SRTs, the soluble microbial products resulting from biomass turnover are shown to represent the main fraction of soluble organic material in the effluent of the reactor, limiting treatment efficiency.  相似文献   

19.
Mineral mining generates acidic, saline, metal-rich mine waters, often referred to as acid mine drainage (AMD). Treatment of AMD and recovering saleable products during the treatment process are a necessity since water is, especially in South Africa, a scarce commodity. The aim of the study presented here was to investigate the effect of zero valent iron (Fe0) on the biological removal of sulphate from AMD in batch reactors. The performance of the reactors was assessed by means of sulphate reduction, chemical oxygen demand (COD), volatile fatty acid (VFA) utilisation and volatile suspended solids (VSS) concentration. To this end, three batch reactors, A, B and C (volume 2.5 L), were operated similarly with the exception of the addition of grass cuttings and iron filings. Reactors A and B received twice as much grass (100 g) as C (50 g). Reactor A received no iron filings to act as a control, while reactors B and C received 50-g iron filings for the experimental duration. The results showed that Fe0 appears to provide sustained sulphate removal when sufficient grass substrate is available. In reactors A and C, sulphate removal efficiency was higher when the COD concentration was lower due to utilisation. In reactor B, sulphate removal efficiency was accompanied by an accumulation of COD as hydrogen (H2) provided by the Fe0 was utilised for sulphate reduction. Furthermore, these results showed the potential of Fe0 to enhance the participation of microorganisms in sulphate reduction.  相似文献   

20.
一种新型光电催化反应器的研制及甲酸的光电催化深度氧化   总被引:21,自引:0,他引:21  
 研制出一种新型的悬浮态光电催化反应器,并以甲酸为研究对象,对该光电反应器进行了光电流增强和COD脱除的表征.研究了光催化、电催化氧化及光电协同催化体系降解甲酸的电压-电流曲线.数据表明,在相同的电压下,光电协同催化体系的电流远高于电化学氧化体系的电流与光催化体系中光电流之和.同时,还研究了一系列物理化学因素如外加电压、光催化剂浓度和空气流量等对光电催化反应的影响.实验结果表明,自行研制的新型悬浮态光电催化反应器具有良好的协同效应,且所需光催化剂的最佳浓度远低于其他同类光电催化反应器的最佳浓度.在该光电催化反应器中,压缩空气可有效地增强传质效应和悬浮态中光激发的TiO2颗粒在电极表面的碰撞几率,从而使得外电场可有效地捕获光生电子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号