首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 989 毫秒
1.
We have used ordered anodic alumina membranes as masks to create large scale ordered arrays of either holes or chemical islands on silica. Regularly spaced holes were obtained by direct etching of silica/silicon or glass substrates through the membranes used as etching masks. To create an array of chemically functional islands, the membrane is first glued on the substrate using a soft polymer and subsequently the polymer is etched gently though the mask. Finally organo-silane molecules are deposited through the alumina/polymer hybrid mask and the mask is removed chemically leaving nanoislands on the substrate. We anticipate that this technique will be useful in future biological and biomedical applications.  相似文献   

2.
刘姿  张恒  吴昊  刘昌 《物理学报》2019,68(10):107301-107301
基于聚苯乙烯球自组装法,在P型氮化镓(P-GaN)衬底上制备了有序致密的掩模板;采用热蒸发法在该模板上沉积金属Al薄膜,通过甲苯溶液去除聚苯乙烯球,得到了金属Al纳米颗粒阵列;采用原子层沉积法,在Al纳米颗粒阵列表面依次沉积氧化铝(Al_2O_3)和氧化锌(ZnO).通过测试Al纳米颗粒阵列的消光谱以及ZnO薄膜的光致发光谱,研究了Al纳米颗粒表面等离激元与ZnO薄膜激子之间的耦合效应.实验结果表明:引入Al纳米颗粒后,在约380 nm位置附近的ZnO近带边发光峰积分强度增强了1.91倍.对Al纳米颗粒表面等离激元增强ZnO光致发光的机理进行探讨.  相似文献   

3.
We report a simple and cost effective method to fabricate regular metallic particle arrays over large areas with good regularity by using holographic lithography interference for the study of localized surface plasmon. Samples of disk-shaped gold nano-particles arranged in square arrays with lattice spacing ranging from 300 nm to 600 nm were successfully fabricated on glass substrates first by sputtering a thin gold layer onto two-dimensional photoresist templates of hole arrays in square lattice obtained by the holographic method and then removing the photoresist by a lift-off procedure. The plasmonic resonance of the gold nano-particle arrays due to the change of morphology by thermal annealing was studied. The disk-shaped gold nano-particles were found to become more round shaped upon heating and blue shift of the extinction plasmonic band was observed. The results were explained with model calculations using spheroidal particles.  相似文献   

4.
Fabrication and characterization of nanostructured metallic arrays with different shapes in monolayer and bilayer were presented in this article. Nano-rhombic, nano-hexagon, and nano-column metallic arrays with the tunable shapes and in-plane dimensions were fabricated by means of vertical reactive ion etching and nanosphere lithography. The nanosize range of nanoparticles is from 50 to 300 nm. Optical characterization of these arrays was performed experimentally by spectroscopy. Specifically, we compared spectra width at site of full width at half maximum (FWHM) of the measured extinction spectra in the visible range to that of the traditional hexagonal-arranged triangular nanoparticles. The results show that the combination of vertical reactive ion etching and nanosphere lithography approach yields as tunable masks and provides an easy way for a flexible nanofabrication. These metallic arrays have narrower FWHM of the spectra which makes them potential applications in biosensors, data storage, and bioreactors.  相似文献   

5.
The fabrication of selectively deposited arrays of metal nanoparticles on textured semiconductor surfaces is reported. Gold nanoparticles were grown on previously textured surfaces using photostimulated chemical deposition from an aqueous solution of AuCl3 salt. Surfaces with random and periodic microreliefs were used as templates of sites for nanoparticle deposition. Dendrite-like and quasi-grating-like microreliefs were produced by anisotropic etching of GaAs (100) substrates. Periodic reliefs (diffraction gratings and bi-gratings) were fabricated by the holographic photochemical etching of the same substrates. Our results from AFM, SEM and EDX show that gold predominantly locates on the tops of the microreliefs. Since the surface relief strongly affects the topology of metal deposition, the use of microprofiling of semiconductor surfaces allows designing nanostructure deposition.  相似文献   

6.
Large-scale truly periodic arrays of vertically aligned zinc oxide nanorods were grown on pre-patterned and pre-annealed gold dots on a-plane sapphire substrates via the vapor–liquid–solid mechanism. Periodic arrays of triangular gold islands were first patterned on the a-plane sapphire substrates by the nanosphere self-assembly technique. Zinc has been found to be an effective interfacial modifier between gold and sapphire to form single catalytic dots from triangular islands. The successful fabrication of zinc oxide nanowires in truly periodic arrays opens up the possibility of achieving enhanced room-temperature ultraviolet lasing and photonic crystal based devices and sensors. PACS 81.07.Bc; 81.10.-h; 81.16.Nd  相似文献   

7.
In this paper we theoretically consider the physical mechanisms behind the surface‐enhanced Raman scattering (SERS) enhancement produced by commercially available Klarite substrates, which consist of rectangular arrays of micrometre‐sized pyramidal pits in silicon with a thin gold coating. Full three‐dimensional numerical simulations of the pits are conducted for both a real gold metal coating and a perfect electrical conductor (PEC) to determine whether the SERS enhancement is due to diffraction or plasmon effects. The pit apex angle and metal coating thickness are also varied to determine whether it is possible to further enhance the SERS signal by optimising the structural parameters of these substrates. By decreasing the film thickness and adjusting the apex angle, it is possible to achieve an enhancement almost double that of a standard Klarite substrate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The fabrications of size-tunable periodic arrays of nickel metal and silicide nanodots on (0 0 1)Si substrates using polystyrene (PS) nanosphere lithography (NSL) and heat treatments have been investigated. The growth of epitaxial NiSi2 was found to be more favorable for the Ni metal nanodot arrays. The effect becomes more pronounced with a decrease in the size of the Ni nanodots. The sizes of the epitaxial NiSi2 nanodots were tuned from 38 to 110 nm by varying the diameter of the PS spheres and heat treatment conditions. These epitaxial NiSi2 nanodots formed on (0 0 1)Si were found to be heavily faceted and the faceted structures were more prone to form at higher temperatures. Based on TEM, HRTEM and SAED analysis, the faceted NiSi2 nanodots were identified to be inverse pyramids in shape. Compared with the NiSi2 nanodot arrays formed using single-layer PS sphere masks, the epitaxial NiSi2 nanodot arrays formed from the double-layer PS sphere templates exhibit larger interparticle spacings and smaller particle sizes. Since the nanoparticle sizes, shapes and interparticle spacings can be adjusted by tuning the diameter of the PS spheres, stacking conditions, and heat treatment conditions, the PS NSL technique promises to be an effective patterning method for growth of other nanostructures.  相似文献   

9.
The synthesis of a highly uniform, large-scale nanoarrays consisting of silica nanotubes above embedded nanohole arrays in silicon substrates is demonstrated. In situ anodized aluminium oxide (AAO) thin film masks on Si substrates were employed, and the nanotubes were fabricated by Ar ion milling through the masks. The geometries of the nanoarrays, including pore diameter, interpore distance and the length of both nanopores and nanotubes could be controlled by the process parameters, which included that the outer pore diameter of silica tube was tuned from ∼80 nm to ∼135 nm while the inner tube diameter from ∼40 nm to ∼65 nm, the interpore distance of the nanotube arrays was from 100 nm to 180 nm and the length of silica tube changed from ∼90 nm to ∼250 nm. The presented nanostructure fabrication method has strong potential for application in intensity and frequency adjustable high luminescence efficiency optoelectronic devices.  相似文献   

10.
以多孔阳极氧化铝(porous anodic alumina,PAA)膜为模板,采用真空电子束蒸镀技术,分别在PAA多孔层以及阻挡层表面形成了银纳米孔和银纳米帽有序阵列表面增强拉曼散射(surface-enhancedRaman scattering,SERS)活性基底,并以膀胱肿瘤细胞作为分子探针,测试和分析了这两种SERS活性基底的表面增强拉曼光谱的特性。结果表明,两种SERS活性基底对膀胱肿瘤细胞的拉曼散射信号均有很好的增强作用。银纳米帽有序阵列SERS活性基底不仅具有较高的SERS增强和荧光猝灭效应,而且不存在与PAA膜中草酸根杂质相关的干扰峰,可获得膀胱肿瘤细胞拉曼散射光谱的更多细节信息。  相似文献   

11.
The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous feed-stocks. In this work,we show an approach to preparing seeded substrates for layer-transferrable silicon films. The commercial silicon wafers are used as mother substrates, on which periodically patterned silicon rod arrays are fabricated, and all of the surfaces of the wafers and rods are sheathed by thermal silicon oxide. Thermal evaporated aluminum film is used to fill the gaps between the rods and as the stiff mask, while polymethyl methacrylate(PMMA) and photoresist are used as the soft mask to seal the gap between the filled aluminum and the rods. Under the joint resist of the stiff and soft masks, the oxide on the rod head is selectively removed by wet etching and the seed site is formed on the rod head. The seeded substrate is obtained after the removal of the masks. This joint mask technique will promote the endeavor of the exploration of mechanically stable,unlimitedly reusable substrates for the kerfless technology.  相似文献   

12.
Porous aluminum oxide membranes with pore diameters smaller than 20 nm were prepared by anodization of aluminum. Using these porous membranes as a template, we fabricated uniform gold cylinder arrays by electrodeposition of gold into the pores. All cylinders in the array were parallel, with their long axes perpendicular to the surface of the template. Electron microscopy, including transmission electron microscopy (TEM) and scanning electron microscopy (SEM), were employed to characterize the morphology of the templates and the fabricated nanometer scale of cylinder arrays. The extinction spectra of the arrays along the longer axes showed that the extinction maximal (5max) shifted to a short wavelength and strengthened when the aspect ratio (l/d) of the cylinders increased. The dependence of the maximal (5max) on the size was explained qualitatively by using the approximate dynamical Maxwell-Garnett model, and the calculated results were compared with the experimental ones.  相似文献   

13.
In this work, we report the fabrication and characterization of size controllable gold nanoparticles (NPs) aggregates for their application in surface enhanced Raman scattering (SERS). Aggregates were prepared using two methodologies: (i) by using silica particles arrays as a template to agglomerate gold NPs between the inter-particle interstices, and (ii) by functionalizing silica particles to be used as support to graft gold nanoparticles and thus to form decorated silica particle arrays. These substrates were used in the detection of Rhodamine 6G producing an enhancement factor (EF) from 104 to 106 that is associated to the increment of hot spot (HS) sites, and the fact that plasmon resonance from aggregates and absorption wavelength of test molecules are closely in resonance with excitation wavelength. The EF was also reduced when the plasmon resonance was red-shifted as a result of the increment of aggregate size. In spite of this, the EF is high enough to make these SERS substrates excellent candidates for sensing applications.  相似文献   

14.
To detect trace‐level polycyclic aromatic hydrocarbons, some investigations of an improved self‐assembly method are carried out using gold colloid films for the preparation of the surface‐enhanced Raman scattering (SERS)‐active substrate. Extinction spectra and scanning electron microscopy images reveal that controllable surface plasmonic metal substrates can be obtained by increasing the temperature of (3‐aminopropyl)trimethoxysilane solution up to 64.5 °C. The SERS‐active substrates have a high enhancement factor, and they can be both easily prepared and reproducible. With the use of these substrates, different concentrations of pyrene and anthracene in aqueous solutions were detected by SERS. A further enhancement can be supported by shifted excitation Raman difference spectroscopy. Raman signals of pyrene and anthracene adsorbed on gold colloid substrates up to limits of detection at 5 and 1 nmol/l, respectively, can be obtained. The quantitative analysis shows the possibility of in situ detection of polycyclic aromatic hydrocarbons while such gold colloid film serves as a SERS‐active substrate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A simple and flexible technique aimed to generate large-area periodic nano-dot array features on metal thin films by laser interference lithography (LIL) has been demonstrated. In this paper, gold nano-dot arrays with a period of ∼450 nm and a dot diameter of ∼100 nm on quartz substrates coated with a gold film of 50 nm thick were fabricated. Multiple enhanced transmission peaks were observed in this patterned film. In addition to the characteristic peak of the gold surface plasmon resonance around 500 nm, multiple shoulder peaks that range from 550 to 700 nm were also observed in the nano-chain array structures. These shoulder peaks disappeared after thermal annealing. It was found that the nano-dots became smaller and well-separated nano-balls under the high temperature annealing process. These nano-structures have potential applications in solar cell, nano-lithography and biosensing.  相似文献   

16.
Periodic Au nanoparticle arrays were fabricated on silica substrates using nanosphere lithography. The identical single-layer masks were prepared by self-assembly of polystyrene nanospheres with radius R = 350 nm. The structural characterization of nanosphere masks and periodic particle arrays was investigated by atomic force microscopy. The nonlinear optical properties of the Au nanoparticle arrays were determined using a single beam z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that periodic Au nanoparticle arrays exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 6.09 × 10−6 cm2/kW and β = −1.87 × 10−6 m/W, respectively.  相似文献   

17.
本文利用离散点偶极子近似方法(DDA)研究了金和银纳米粒子二维周期阵列的光学性质。研究结果表明二维周期阵列的消光性质及其表面等离子共振(SPR)波长受到阵列内粒子组成材料、粒子形状尺寸、阵列周期和阵列排布方式等因素的影响。对于二维正方阵列,当周期较小时(一般小于300 nm),阵列的共振波长主要取决于粒子组成材料和形状尺寸;当周期与阵列单体的共振波长附近时,阵列的消光谱中会出现极窄且锐的SPR共振峰,峰位只与阵列的周期值相关。改变阵列在平行和垂直于入射光偏振方向的周期,可以方便地调节二维长方阵列的共振峰的峰位和峰宽。  相似文献   

18.
A templating method for fabricating two-dimensional (2D) arrays of micron-sized goM rings is reported. The microstructures are formed by electroless plating in a through-porous polymer membrane on a silicon substrate obtained from a closed-packed silica colloidal crystal. Our results show that the sizes of gold rings can be altered by varying electroless plating conditions for the porous polystyrene membranes. Moreover, we explain the growth mechanism of gold rings using the classical crystal growth theory that is preferential nucleation at reentrant sites.  相似文献   

19.
The optical properties of two‐dimensional assemblies of metal nanoparticles are strongly influenced by the morphological configuration of the metal particles in the layer. Therefore, we correlate the structural and optical properties of two‐dimensional, hexagonal gold nanoparticle arrays. We characterize the structure of the arrays using grazing‐incidence small angle X‐ray scattering (GISAXS). From the GISAXS pattern, we determine the size of the gold particles as well as the lattice spacing of the hexagonal assembly. Based upon these parameters we calculate the dielectric function of the gold particle array using the Maxwell–Garnett effective medium theory. We further deduce the absorption spectrum which closely follows the measured absorption and photoconductance spectrum. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Investigation of the surface properties of gold nanowire arrays   总被引:1,自引:0,他引:1  
Gold nanowire arrays with diameters ranging from 45 to 200 nm were obtained via electrochemical deposition within the ion-track templates. The morphology of gold nanowires was imaged by scanning electron microscopy (SEM). The surface properties were investigated by surface plasmon resonance (SPR) and X-ray photoelectron spectroscopy (XPS). The SPR peaks were observed as the gold nanowire arrays embedded in the templates and their intensity decreased after the sample exposed to the air for a certain time due to the formation of chemisorbed oxygen on nanowire surface. The positive binding energy shifts in Au core level was found when the gold nanowire arrays embodied in template and the initial- and finial-state effects were introduced to explain this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号