共查询到20条相似文献,搜索用时 46 毫秒
1.
The proper orthogonal decomposition (POD) is a model reduction technique for the simulation of physical processes governed by partial differential equations (e.g.,fluid flows). It has been successfully used in the reduced-order modeling of complex systems. In this paper, the applications of the POD method are extended, i.e., the POD method is applied to a classical finite difference (FD) scheme for the non-stationary Stokes equation with a real practical applied background. A reduced FD scheme is established with lower dimensions and sufficiently high accuracy, and the error estimates are provided between the reduced and the classical FD solutions. Some numerical examples illustrate that the numerical results are consistent with theoretical conclusions. Moreover, it is shown that the reduced FD scheme based on the POD method is feasible and efficient in solving the FD scheme for the non-stationary Stokes equation. 相似文献
2.
An indirect shooting method based on the POD/DEIM technique for distributed optimal control of the wave equation 下载免费PDF全文
This paper presents a fast numerical method, based on the indirect shooting method and Proper Orthogonal Decomposition (POD) technique, for solving distributed optimal control of the wave equation. To solve this problem, we consider the first‐order optimality conditions and then by using finite element spatial discretization and shooting strategy, the solution of the optimality conditions is reduced to the solution of a series of initial value problems (IVPs). Generally, these IVPs are high‐order and thus their solution is time‐consuming. To overcome this drawback, we present a POD indirect shooting method, which uses the POD technique to approximate IVPs with smaller ones and faster run times. Moreover, in the presence of the nonlinear term, to reduce the order of the nonlinear calculations, a discrete empirical interpolation method (DEIM) is applied and a POD/DEIM indirect shooting method is developed. We investigate the performance and accuracy of the proposed methods by means of 4 numerical experiments. We show that the presented POD and POD/DEIM indirect shooting methods dramatically reduce the CPU time compared to the full indirect shooting method, whereas there is no significant difference between the accuracy of the reduced and full indirect shooting methods. 相似文献
3.
SELF-ADAPTIVE STRATEGY FOR ONE-DIMENSIONAL FINITE ELEMENT METHOD BASED ON ELEMENT ENERGY PROJECTION METHOD 总被引:1,自引:0,他引:1
Based on the newly-developed element energy projection (EEP) method for computation of super-convergent results in one-dimensional finite element method (FEM), the task of self-adaptive FEM analysis was converted into the task of adaptive piecewise polynomial interpolation. As a result, a satisfactory FEM mesh can be obtained, and further FEM analysis on this mesh would immediately produce an FEM solution which usually satisfies the user specified error tolerance. Even though the error tolerance was not completely satisfied, one or two steps of further local refinements would be sufficient. This strategy was found to be very simple, rapid, cheap and efficient. Taking the elliptical ordinary differential equation of second order as the model problem, the fundamental idea, implementation strategy and detailed algorithm are described. Representative numerical examples are given to show the effectiveness and reliability of the proposed approach. 相似文献
4.
This paper presents an anisotropic adaptive finite element method (FEM) to solve the governing equations of steady magnetohydrodynamic (MHD) duct flow. A residual error estimator is presented for the standard FEM, and two-sided bounds on the error independent of the aspect ratio of meshes are provided. Based on the Zienkiewicz-Zhu estimates, a computable anisotropic error indicator and an implement anisotropic adaptive refinement for the MHD problem are derived at different values of the Hartmann number. The most distinguishing feature of the method is that the layer information from some directions is captured well such that the number of mesh vertices is dramatically reduced for a given level of accuracy. Thus, this approach is more suitable for approximating the layer problem at high Hartmann numbers. Numerical results show efficiency of the algorithm. 相似文献
5.
The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach. 相似文献
6.
The lowest order P1-nonconforming triangular finite element method (FEM) for elliptic and parabolic interface problems is investigated. Under some reasonable regularity assumptions on the exact solutions, the optimal order error estimates are obtained in the broken energy norm. Finally, some numerical results are provided to verify the theoretical analysis. 相似文献
7.
8.
Dispersion error reduction for acoustic problems using the smoothed finite element method (SFEM) 下载免费PDF全文
The smoothed finite element method (SFEM), which was recently introduced for solving the mechanics and acoustic problems, uses the gradient smoothing technique to operate over the cell‐based smoothing domains. On the basis of the previous work, this paper reports a detailed analysis on the numerical dispersion error in solving two‐dimensional acoustic problems governed by the Helmholtz equation using the SFEM, in comparison with the standard finite element method. Owing to the proper softening effects provided naturally by the cell‐based gradient smoothing operations, the SFEM model behaves much softer than the standard finite element method model. Therefore, the SFEM can significantly reduce the dispersion error in the numerical solution. Results of both theoretical and numerical experiments will support these important findings. It is shown clearly that the SFEM suits ideally well for solving acoustic problems, because of the crucial effectiveness in reducing the dispersion error. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
9.
IntroductionAgeneraltheoryoftheleast_squaresmethodhasbeendevelopedbyAKAziz,RBKelloggandABStephensin[1].Themostimportantadvantageleadstoasymmetricpositivedefiniteproblem.JHBrambleandJANitshepresentedaleast_squaresmethodforDirichletproblemsin[2].Themethodge… 相似文献
10.
This paper studies a low order mixed finite element method (FEM) for nonstationary incompressible Navier-Stokes equations. The velocity and pressure are approximated by the nonconforming constrained Q 1 rot element and the piecewise constant, respectively. The superconvergent error estimates of the velocity in the broken H 1-norm and the pressure in the L 2-norm are obtained respectively when the exact solutions are reasonably smooth. A numerical experiment is carried out to confirm the theoretical results. 相似文献
11.
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach. 相似文献
12.
An H~1 space-time discontinuous Galerkin (STDG) scheme for convectiondiffusion equations in one spatial dimension is constructed and analyzed. This method is formulated by combining the H~1 Galerkin method and the space-time discontinuous finite element method that is discontinuous in time and continuous in space. The existence and the uniqueness of the approximate solution are proved. The convergence of the scheme is analyzed by using the techniques in the finite difference and finite element methods. An optimal a-priori error estimate in the L~∞ (H~1 ) norm is derived. The numerical exper- iments are presented to verify the theoretical results. 相似文献
13.
A moving finite element algorithm has been compared against the upwind-differencing and Smolarkiewicz methods for the population balance equation of multicomponent particle growth processes. Analytical solutions and an error function have been used to test the numerical methods. The moving finite elements technique is much more accurate than other methods for a wide range of parameters. Since this method uses moving grids, it is able to model very narrow particle size distributions. It is also shown that the method can be extended to solve condensational growth problems which include particle curvature and non-continuum mass transfer effects. 相似文献
14.
Based on the concept of the constitutive relation error along with the residuals of both the origin and the dual problems,a goal-oriented error estimation method with extended degrees of freedom is developed.It leads to the high quality local error bounds in the problem of the direct-solution steady-state dynamic analysis with a frequency-domain finite element,which involves the enrichments with plural variable basis functions.The solution of the steady-state dynamic procedure calculates the harmonic response directly in terms of the physical degrees of freedom in the model,which uses the mass,damping,and stiffness matrices of the system.A three-dimensional finite element example is carried out to illustrate the computational procedures. 相似文献
15.
Accurate modeling of interfacial flows requires a realistic representation of interface topology. To reduce the computational effort from the complexity of the interface topological changes, the level set method is widely used for solving two‐phase flow problems. This paper presents an explicit characteristic‐based finite volume element method for solving the two‐dimensional level set equation. The method is applicable for the case of non‐divergence‐free velocity field. Accuracy and performance of the proposed method are evaluated via test cases with prescribed velocity fields on structured grids. By given a velocity field, the motion of interface in the normal direction and the mean curvature, examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
16.
Energy conservation of nonlinear Schrodinger ordinary differential equation was proved through using continuous finite element methods of ordinary differential equation; Energy integration conservation was proved through using space-time continuous fully discrete finite element methods and the electron nearly conservation with higher order error was obtained through using time discontinuous only space continuous finite element methods of nonlinear Schrodinger partial equation. The numerical results are in accordance with the theory. 相似文献
17.
A proper orthogonal decomposition (POD)‐based reduced‐order model of the parabolized Navier–Stokes (PNS) equations is derived in this article. A space‐marching finite difference method with time relaxation is used to obtain the solution of this problem, from which snapshots are obtained to generate the POD basis functions used to construct the reduced‐order model. In order to improve the accuracy and the stability of the reduced‐order model in the presence of a high Reynolds number, we applied a Sobolev H1 norm calibration to the POD construction process. Finally, some numerical tests with a high‐fidelity model as well as the POD reduced‐order model were carried out to demonstrate the efficiency and the accuracy of the reduced‐order model for solving the PNS equations compared with the full PNS model. Different inflow conditions and different selections of snapshots were experimented to test the POD reduction technique. The efficiency of the H1 norm POD calibration is illustrated for the PNS model with increasingly higher Reynolds numbers, along with the optimal dissipation coefficient derivation, yielding the best root mean square error and correlation coefficient between the full and reduced‐order PNS models. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
The boundary-type finite element method has been investigated and applied to the Helmholz and mild-slope equations. Four types of interpolation function are examined based on trigonometric function series. Three-node triangular, four-node quadrilateral, six-node triangular and eight-node quadrilateral elements are tested; these are all non-conforming elements. Three types of numerical example show that the three-node triangular and four-node quadrilateral elements are useful for practical analysis. 相似文献
19.
A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms. 相似文献
20.
A highly efficient H1-Galerkin mixed finite element method(MFEM) is presented with linear triangular element for the parabolic integro-differential equation.Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h2) for both the original variable u in H1(π) norm and the flux p =u in H(div,π) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method. 相似文献