首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 71 毫秒
1.
Two systems of non-homogeneous linear equations with 8 unknowns are obtained.This is done by introducing two stress functions containing 16 undetermined coefficients and two real stress singularity exponents with the help of boundary conditions.By solving the above systems of non-homogeneous linear equations,the two real stress singularity exponents can be determined when the double material parameters meet certain conditions.The expression of the stress function and all coefficients are obtained based on the uniqueness theorem of limit.By substituting these parameters into the corresponding mechanics equations,theoretical solutions to the stress intensity factor,the stress field and the displacement field near the crack tip of each material can be obtained when both discriminants of the characteristic equations are less than zero.Stress and displacement near the crack tip show mixed crack characteristics without stress oscillation and crack surface overlapping.As an example,when the two orthotropic materials are the same,the stress singularity exponent,the stress intensity factor,and expressions for the stress and the displacement fields of the orthotropic single materials can be derived.  相似文献   

2.
The fracture problems near the interface crack tip for mode Ⅱ of double dissimilar orthotropic composite materials are studied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized bi-harmonic equations,the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions,a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about himaterial engineering parameters. According to the uniqueness theorem of limit,both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same,the stress singularity exponents,stress intensity factors and stresses for mode Ⅱ crack of the orthotropic single material are obtained.  相似文献   

3.
The present work is concerned with the problem of mode Ⅲ crack perpendicular to the interface of a bi-strip composite. One of these strips is made of a functionally graded material and the other of an isotropic material, which contains an edge crack perpendicular to and terminating at the interface. Fourier transforms and asymptotic analysis are employed to reduce the problem to a singular integral equation which is numerically solved using Gauss-Chebyshev quadrature formulae. Furthermore, a parametric study is carried out to investigate the effects of elastic and geometric characteristics of the composite on the values of stress intensity factor.  相似文献   

4.
By the application of the theory of complex functions, asymmetrical dynamic propagation problems on mode Ⅲ interface crack are studied. The universal representations of analytical solutions are obtained by the approaches of self-similar function. The problems researched can be facilely transformed into Riemann-Hilbert problems and analytical solution to an asymmetrical propagation crack under the condition of point loads and unit-step loads, respectively, is acquired. After those solutions were used by superposition theorem, the solutions of arbitrarily complex problems could be attained.  相似文献   

5.
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.  相似文献   

6.
7.
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic–viscoplastic constitutive relation with various hardening–softening–hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip.On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening(or softening–hardening) has a particularly strong effect on the near crack tip stress and deformation fields.  相似文献   

8.
9.
An Element Free Galerkin (EFG) method based formulation for steady dynamic crack growth in elastic–plastic materials is developed. A domain convecting parallel to the steadily moving crack tip is employed. The EFG methodology eliminates the stringent mesh requirements of the Finite Element Method (FEM) for such problems. Both rate-independent materials and rate-dependent materials are considered. The material is characterized by von Mises yielding condition and an associated flow rule. For rate-independent materials, both the influence of crack speeds and that of strain hardening on the mechanics of steady dynamic crack growth are investigated. For rate-dependent materials, only a non-hardening material is considered with emphasis on determining the influence of viscous properties of materials and crack speeds. The influence of strain hardening on steady dynamic crack growth shows the same trends as for steady quasi-static crack growth. The simplifications used in the literature in deriving analytical solutions for high strain-rate crack growth have been examined thoroughly using the numerical results.  相似文献   

10.
With the theory of complex functions, dynamic propagation problems concerning surfaces of asymmetrical mode Ⅲ crack subjected to moving loads are investigated. General representations of analytical solutions are obtained with self-similar functions. The problems can be easily converted into Riemann-Hilbert problems using this technique. Analytical solutions to stress, displacement and dynamic stress intensity factor under constant and unit-step moving loads on the surfaces of asymmetrical extension crack, respectively, are obtained. By applying these solutions, together with the superposition principle, solutions of discretionarily intricate problems can be found.  相似文献   

11.
通过构造含两个实奇异指数的应力函数,利用复合材料断裂复变方法对正交异性双材料界面裂纹进行了研究。在特征方程组的判别式都小于零的情况下,通过求解一类广义重调和方程组边值问题,在双材料工程参数满足适当的条件下,推出了正交异性双材料半无限界面裂纹尖端的应力场和位移场。研究表明:其结果没有振荡奇异性;当上下半平面材料参数相同时,可获得正交异性单材料的应力场。并通过有限元算例进行比较,验证了理论结果的正确性。  相似文献   

12.
The influence of the geometry of a thin intermediate zone on the stress distribution has been investigated in the vicinity of a crack tip in a bimaterial structure. Corresponding modelling boundary value problems are reduced to functional-difference equations by the Mellin transform technique, and later to singular integral equations with fixed point singularities. It has been observed that the order of the stress singularity is essentially dependent on the model parameters. Numerical results concerning the stress singularity exponents and generalized stress intensity factors are presented.  相似文献   

13.
A mechanical model was established for mode Ⅱ interfacial crack static growingalong an elastic-elastic power law creeping bimaterial interface. For two kinds of boundaryconditions on crack faces, traction free and frictional contact, asymptotic solutions of thestress and strain near tip-crack were given. Results derived indicate that the stress andstrain have the same singularity, there is not the oscillatory singularity in the field; thecreep power-hardening index n and the ratio of Young‘s module notably influence the crack-tip field in region of elastic power law creeping material and n only influences distribution ofstresses and strains in region of elastic material. When n is bigger, the creepingdeformation is dominant and stress fields become steady, which does not change with n.Poisson‘s ratio does not affect the distributing of the crack-tip field.  相似文献   

14.
The asymptotic field near an interface crack tip is analyzed with the fully nonlinear theory. By dividing the crack tip field into narrowing sectors and an expanding sector, the asymptotic equations for the crack tip field are derived and solved. The singular characters of stress and strain near the crack tip are revealed.  相似文献   

15.
In this paper, double dissimilar orthotropic composite materials interfacial crack is studied by constructing new stress functions and employing the method of composite material complex. When the characteristic equations' discriminants △1 〉 0 and △2 〉0, the theoretical formula of the stress field and the displacement field near the mode I interface crack tip are derived, indicating that there is no oscillation and interembedding between the interfaces of the crack.  相似文献   

16.
A high order of asymptotic solution of the singular fields near the tip of a mode III interface crack for pure power-law hardening bimaterials is obtained by using the hodograph transformation. It is found that the zero order of the asymptotic solution corresponds to the assumption of a rigid substrate at the interface, and the first order of it is deduced in order to satisfy completely two continuity conditions of the stress and displacement across the interface in the asymptotic sense. The singularities of stress and strain of the zeroth order asymptotic solutions are −1/(n 1+1) and −n/(n 1+1) respectively. (n=n 1,n 2 is the hardening exponent of the bimaterials.) The applicability conditions of the asymptotic solutions are determined for both zeroth and first orders. It is proved that the Guo-Keer solution[10] is limited in some conditions. The angular functions of the singular fields for this interface crack problem are first expressed by closed form. The project supported by National Natural Science Foundation of China  相似文献   

17.
Finite element computation are carried out to simulate plane strain crack growth on a bimaterial interface under the assumption of small scale yielding. The modified Gurson constitutive equation and the element vanish technique introduced by Tvergaard et al. are used to model the final formation of an open crack. It is found from the calculation that the critical fracture toughness for crack growth is much lower in bimaterials than that in homogeneous material. The critical fracture toughness is strongly dependent on material properties of the bimaterial pair and the mixed mode of remote loads. The interface crack grows in the more compliant (lower hardening) material or in the weaker (lower yield strength) material. In Mode-I loading, the crack grows zigzag along the interface. Project supported by Fok Ying-Tung Education Foundation and National Natural Science Foundation of China.  相似文献   

18.
Reanalyzed in detail is the stress and strain distribution near the tip of a Mode I steadily growing crack in an elastic and perfectly-plastic material. The crack tip region is divided into five angular sectors, one of which is singular in character and represents a rapid transition zone that becomes a line of strain discontinuity in the limit as crack tip is approached. It is shown for an incompressible material (ν=0.5) under plane strain that the local strain in all the angular sectors possesses the same logarithm singularity, i.e., In r where r is the radial distance measured from the crack tip. This result also prevails for the compressible material ( v < 0.5) and resolves a long standing controversy concerning the strain singularity in the sector just ahead of the crack tip.  相似文献   

19.
A mode III crack cutting perpendicularly across the interface between two dissimilar semi-infinite magnetoelectroelastic solid is studied under the combined loads of a line force, a line electric charge and a line magnetic charge at an arbitrary location. The impermeable conditions are implied on the crack faces. The technique developed in literature for the elastic bimaterial with a crack cutting interface is exploited to treat the magnetoelectroelastic bimaterial. The Riemann-Hilbert problem can be formulated and solved based on complex variable method. Analytical solutions can be obtained for the entire plane. The intensity factors around crack tips can be defined for the elastic, electric and magnetic fields. It shows that, no matter where the load position is, the electric displacement intensity factors (EDIFs), as well as the magnetic induction intensity factors (MIIFs), are identical in magnitude but opposite in sign for both crack tips, on condition that a line force is solely applied. Alternatively, if only a line electric charge is considered, then the stress intensity factors (SIFs) and the MIIFs exhibit the behavior. Likewise, if only a line magnetic charge is applied, it turns to the SIFs and the EDIFs instead. In addition, the dependence of the intensity factors is graphically shown with respect to the location of a line force. It is found that the SIF for a crack tip tends to be infinite if the applied force is approaching the tip itself, but the EDIF, with the complete opposite trend, tends to be vanishing. Finally, focusing on the more practical case of piezoelectric/piezomagnetic bimaterial, variation of the SIF along with the moduli as well as the piezo constitutive coefficients is explored. These analyses may provide some guidance for material selection by minimizing the SIF. It is also believed that the results obtained in this paper can serve as the Green’s function for the dissimilar magnetoelectroelastic semi-infinite bimaterial with a crack cutting the interface under general magnetoelectromechanical loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号