首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The steady-state and transient shear flow dynamics of polymer drops in a microchannel are investigated using the dissipative particle dynamics (DPD) method. The polymer drop is made up of 10% DPD solvent particles and 90% finite extensible non-linear elastic (FENE) bead spring chains, with each chain consisting of 16 beads. The channel’s upper and lower walls are made up of three layers of DPD particles, respectively, perpendicular to Z-axis, and moving in opposite directions to generate the shear flow field. Periodic boundary conditions are implemented in the X and Y directions. With FENE chains, shear thinning and normal stress difference effects are observed. The “colour” method is employed to model immiscible fluids according to Rothman–Keller method; the χ-parameters in Flory–Huggins-type models are also analysed accordingly. The interfacial tension is computed using the Irving–Kirkwood equation. For polymer drops in a steady-state shear field, the relationship between the deformation parameter (Ddef) and the capillary number (Ca) can be delineated into a linear and nonlinear regime, in qualitative agreement with experimental results of Guido et al. [J. Rheol. 42 (2) (1998) 395]. In the present study, Ca<0.22, in the linear regime. As the shear rate increases further, the drop elongates; a sufficiently deformed drop will break up; and a possible coalescence may occur for two neighbouring drops. Dynamical equilibrium between break-up and coalescence results in a steady-state average droplet-size distribution. In a shear reversal flow, an elongated and oriented polymer drop retracts towards a roughly spherical shape, with a decrease in the first normal stress difference. The polymer drop is found to undergo a tumbling mode at high Schmidt numbers. A stress analysis shows that the stress response is different from that of a suspension of solid spheres. An overshoot in the strain is observed for the polymer drop under extension due to the memory of the FENE chains.  相似文献   

2.
Wettability alternation phenomena is considered one of the most important enhanced oil recovery (EOR) mechanisms in the chemical flooding process and induced by the adsorption of surfactant on the rock surface. These phenomena are studied by a mesoscopic method named as dissipative particle dynamics (DPD). Both the alteration phenomena of water-wet to oil-wet and that of oil-wet to water-wet are simulated based on reasonable definition of interaction parameters between beads. The wetting hysteresis phenomenon and the process of oil-drops detachment from rock surfaces with different wettability are simulated by adding long-range external forces on the fluid particles. The simulation results show that, the oil drop is liable to spread on the oil-wetting surface and move in the form of liquid film flow, whereas it is likely to move as a whole on the waterwetting surface. There are the same phenomena occuring in wettability-alternated cases. The results also show that DPD method provides a feasible approach to the problems of seepage flow with physicochemical phenomena and can be used to study the mechanism of EOR of chemical flooding.  相似文献   

3.
Low Reynolds number flow of Newtonian and viscoelastic Boger fluids past periodic square arrays of cylinders with a porosity of 0.45 and 0.86 has been studied. Pressure drop measurements along the flow direction as a function of flow rate as well as flow visualization has been performed to investigate the effect of fluid elasticity on stability of this class of flows. It has been shown that below a critical Weissenberg number (Wec), the flow in both porosity cells is a two-dimensional steady flow, however, pressure fluctuations appear above Wec which is 2.95±0.25 for the 0.45 porosity cell and 0.95±0.08 for the higher porosity cell. Specifically, in the low porosity cell as the Weissenberg number is increased above Wec a transition between a steady two-dimensional to a transient three-dimensional flow occurs. However, in the high porosity cell a transition between a steady two-dimensional to a steady three-dimensional flow consisting of periodic cellular structures along the length of the cylinder in the space between the first and the second cylinder occurs while past the second cylinder another transition to a transient three-dimensional flow occurs giving rise to time- dependent cellular structures of various wavelengths along the length of the cylinder. Overall, the experiments indicate that viscoelastic flow past periodic arrays of cylinders of various porosities is susceptible to purely elastic instabilities. Moreover, the instability observed in lower porosity cells where a vortex is present between the cylinders in the base flow is amplifieds spatially, that is energy from the mean flow is continuously transferred to the disturbance flow along the flow direction. This instability gives rise to a rapid increase in flow resistance. In higher porosity cells where a vortex between the cylinders is not present in the base flow, the energy associated with the disturbance flow is not greatly changed along the flow direction past the second cylinder. In addition, it has been shown that in both flow cells the instability is a sensitive function of the relaxation time of the fluid. Hence, the instability in this class of flows is a strong function of the base flow kinematics (i.e., curvature of streamlines near solid surfaces), We and the relaxation time of the fluid.  相似文献   

4.
Dissipative particle dynamics (DPD) was applied to fluid flow in irregular geometries using non‐orthogonal transformation, where an irregular domain is transformed into a simple rectangular domain. Transformation for position and velocity was used to relate the physical and computational domains. This approach was described by simulating fluid flow inside a two‐dimensional convergent–divergent nozzle. The nozzle geometry is controlled by the contraction ratio (CR) in the middle of the channel. The range of Reynolds number and CR, in this paper, was Re = 10hbox??200 and CR = 0.8 and 0.6, respectively. The DPD results were validated against in‐house computational fluid dynamic (CFD) finite volume code based on the stream function vorticity approach. The results revealed an excellent agreement between DPD and CFD. The maximum deviation between the DPD and CFD results was within 2%. Local and average coefficients of friction was calculated and it compared well with the CFD results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Kumar  Aman  DasGupta  Anirvan 《Nonlinear dynamics》2021,103(1):293-308

In this paper, the dynamics of a particle placed on a thin circular plate carrying circumferential harmonic travelling wave is studied. Coulomb friction is used to model the particle–surface interaction. Distinct regions on the plate surface are identified where either of the three phases of particle motion, namely jumping, sliding and sticking, occurs. Also, the effect of wave frequency and the plate geometry on these regions is studied. Interestingly, there exists an optimum plate thickness for which the region of sliding is maximum. At certain wave frequencies, from the numerical simulations within sticking and sliding regions, it is observed that the average particle motion spirals inwards towards the plate centre. Such an average motion is observed whenever the particle is placed initially with a zero velocity relative to the plate surface. The Gedanken experiments discussed herein provide cogent explanations to all the observed average (slow) dynamics and are also found to be useful in predicting the slow dynamics of the particle a priori, that is, before the actual numerical simulations. The particle’s velocity couples the radial and tangential sliding friction components and is found to be the key physical feature that explains the observed behaviour. Also, it is observed that the plate surface excited by circumferential travelling waves can provide acoustic lubrication to a particle by reducing the limiting force required to move it relative to the surface. The methods discussed in this paper can be extended to study the dynamics of a group of particles (granular materials) and extended rigid bodies, interacting with such surface waves.

  相似文献   

6.
We consider creeping flow through a cubic array of identical spherical bubbles and compute the drag force exerted on a representative bubble in the array using a method originally employed by Hasimoto (1959) and recently modified by Sangani & Acrivos (1982). In addition to deriving analytic expressions for the drag to 0(c2), we present numerical results for the complete range of bubble volume fractions c for the three cubic arrays.  相似文献   

7.
Slow flow through a periodic array of spheres is studied theoretically, and the drag force by the fluid on a sphere forming the periodic array is calculated using a modification of the method developed by Hashimoto (1959). Results for the complete range of volume fraction c of spheres are given for simple cubic, body-centered cubic, and face-centered cubic arrays and these agree well with the corresponding values reported by previous investigators. Also, series expansions for the drag force to 0(c10) are derived for each of these cubic arrays. The method is also applied to determine the drag force to 0(c3) on infinitely long cylinders in square and hexagonal arrays.  相似文献   

8.
Solutions for the slow flow past a square and a hexagonal array of cylinders are determined using a somewhat non-conventional numerical method. The calculated values of the drag on a cylinder as a function of c, the volume fraction of the cylinders, are shown to be in excellent agreement with the corresponding asymptotic expressions for c ? 1 and for c → cmax, the maximum volume fraction. These solutions are then used to calculate the average temperature difference between the bulk and the cylinders which are heated uniformly under conditions of small Reynolds and Péclet numbers.  相似文献   

9.
Smoothed particle hydrodynamics (SPH) has been widely applied in simulating fluid flow because of its attractive properties, for example, it is fully Lagrangian and mesh free. However, this method usually uses the explicit method to solve the conservation equations and in this form it is only suitable to momentum dominated flows with low viscosity. In polymer processing, the fluid is non-Newtonian with high viscosity, O(103) to O(104) Pa-s say, and the pressure is high as O(106) to O(1010) Pa. The algorithm of the standard SPH is infeasible in this case, because only very small time steps can be used for a stable simulation. We have developed an implicit SPH for non-Newtonian flow, which is completely matrix free, to solve the equation system iteratively and robustly. The artificial pressure is introduced between particles to stabilize the SPH system avoiding the tensile instability. The fluid is compressible under high pressure. Realistic state equations for polymers, such as the Tait and SSY [16] equations are adopted to describe the density/pressure relations. The method is finally applied to the simulation of moulding flow of a modified power law fluid with the zero shear rate viscosity of 1.22 × 104 Pa-s, Reynolds number of 3 × 10?4 to 6 × 10?5 and the highest pressure of O(108) to O(1010) Pa.  相似文献   

10.
In this paper, a revisiting Hughes' dynamic continuum model is used to investigate and predict the essential macroscopic characteristics of pedestrian flow, such as flow, density and average speed, in a two dimensional continuous walking facility scattered with a circular obstruction. It is assumed that pedestrians prefer to walk a path with the lowest instantaneous travel cost from origin to destination, under the consideration of the current traffic conditions and the tendency to avoid a high-density region and an obstruction. An algorithm for the pedestrian flow model is based on a cellcentered finite volume method for a scalar conservation law equation, a fast sweeping method for an Eikonal-type equation and a second-order TVD Runge-Kutta method for the time integration on unstructured meshes. Numerical results demonstrate the effectiveness of the algorithm. It is verified that density distribution of pedestrian flow is influenced by the position of the obstruction and the path-choice behavior of pedestrians.  相似文献   

11.
12.
An automated technique is described for reconstructing three-dimensional trajectories of tracer particles in curved circular ducts. Individual particles are tracked in real time by a rotating camera under computer control. A digital imaging system enables the computer to locate the particle, adjust the speed of rotation, and store position and calibration data. By viewing the tube from approximately orthogonal directions, three-dimensional information on the position of the particle is obtained. Its precise location is calculated by tracing rays from the camera to the interior of the tube. This technique yields detailed three-dimensional position and velocity data along a trajectory.  相似文献   

13.
Summary A set of constitutive equations for a group of incompressible materials of technological importance previously proposed by the authors is used to analyze the axial flow of a gelling Binghamlike material. Through five material parameters these constitutive equations account for the phenomena of breakdown in rigidity after deformation has occurred and of recovery in rigidity in the state of continued deformation or in the state of rest. Due to the complexity of predicting the flow of such nonlinear materials only the steady state behaviour in general seems to be tractable.The solution presented here describes the steady state axial flow of this type material through a circular pipe. It is shown that, depending on the choice of material parameters, two separate solutions may occur. As in the case of axial flow of a Bingham material or a retarded Bingham material a concentric core with rigid body motion is found. Analytically the radius of this core enters into the formulation of the requirements that must be fulfilled to establish a continuous flow field.It is further shown that volume flow rate dependence on the current pressure gradient may be a function of the loading history. For a specific case this dependence is shown in graphical form.  相似文献   

14.
Solutions are found for the Stokes equations of motion for a viscous fluid flowing either parallel or perpendicular to the axes of cylinders in square, rectangular, triangular and hexagonal arrays. This is done by matching a solution outside one cylinder to a sum of solutions with equal singularities inside every cylinder of an infinite array. Some of the terms in the solution are indeterminate but these indeterminacies are resolved. The resulting solutions are several terms of a power series in the density.High density approximations are found for the longitudinal case when the cylinders overlap.For low densities the mean velocity for transverse flow found to be independent of orientation of the array and is half the mean velocity for parallel flow in the same pressure field to several orders of magnitude of the volume concentration of cylinders.  相似文献   

15.
An analysis is presented for the steady one-dimensional flow behind a normal shock wave of a compressible gas containing small spherical particles of solid propellant. The solids mass fraction is assumed large enough to require that the void volume fraction be retained as a variable in the governing conservation equations. The particles are ignited by the shocked air and by viscous interaction. Propellant gases are then generated which depend on the instantaneous size of the particles and on the linear burning rate. The latter is assumed dependent upon the local pressure and the particle temperature. These calculations are of interest because of the potential hazards of such particle flows, in that extreme pressures are predicted within the relaxation zone, pressures even greater than those calculated for the final equilibrium conditions. The results stress the importance of the Mach number of the normal (strong shock) and the energy content of the propellant (J/kg).  相似文献   

16.
Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 112–119, November–December, 1988.  相似文献   

17.
The time periodic electroosmotic flow of an incompressible micropolar fluid between two infinitely extended microparallel plates is studied.The analytical solutions of the velocity and microrotation are derived under the Debye-H(u|¨)ckel approximation.The effects of the related dimensionless parameters,e.g.,the micropolar parameter,the frequency,the electrokinetic width,and the wall zeta potential ratio of the upper plate to the lower plate,on the electroosmotic velocity and microrotation are investigated.The results show that the amplitudes of the velocity and the volume flow rate will drop to zero when the micropolar parameter increases from 0 to 1.The effects of the electrokinetic width and the frequency on the velocity of the micropolar fluid are similar to those of the Newtonian fluid.However,the dependence of the microrotation on the related parameters mentioned above is complex.In order to describe these effects clearly,the dimensionless microrotation strength and the penetration depth of the microrotation are defined,which are used to explain the variation of the microrotation.In addition,the effects of various parameters on the dimensionless stress tensor at the walls are studied.  相似文献   

18.
For periodic arrays of spheres the permeability is obtained numerically as a function of the dimensionless wave number kD in the flow direction, where D is the sphere diameter, k = 2π/λ is the wave number, and λ is the distance between the spheres in the flow direction. Our numerical results for the solids fraction of 0.45 show that for kD < 6.5 the permeability increases with increasing kD. But, it decreases for 6.5 < kD < 8.5 and reaches a local minimum at kD  8.5, and then increases again with increasing kD. Since the Fourier spectrum of the area fraction is zero for kD = 8.98, this result suggests that the area fraction plays an important role in determining the dependence of permeability on the distance between the spheres in the flow direction. For smaller solids fractions, the positions of the local maximum and minimum of permeability shift to slightly smaller kD’s.  相似文献   

19.
Mixing behaviors of particles are simulated in a sheared granular flow using differently colored but otherwise identical glass spheres, with five different bottom wall velocities. By DEM simulation, the solid fractions, velocities, velocity fluctuations and granular temperatures are measured.The mixing layer thicknesses are compared with the calculations from a simple diffusion equation using the data of apparent self-diffusion coefficients obtained from the current simulation measurements. The calculations and simulation results showed good agreements, demonstrating that the mixing process of granular materials occurred through the diffusion mechanism.  相似文献   

20.
DEM simulation of particle mixing in a sheared granular flow   总被引:1,自引:0,他引:1  
Li-Shin Lu  Shu-San Hsiau   《Particuology》2008,6(6):445-454
Mixing behaviors of particles are simulated in a sheared granular flow using differently colored but otherwise identical glass spheres, with five different bottom wall velocities. By DEM simulation, the solid fractions, velocities, velocity fluctuations and granular temperatures are measured. The mixing layer thicknesses are compared with the calculations from a simple diffusion equation using the data of apparent self-diffusion coefficients obtained from the current simulation measurements. The calculations and simulation results showed good agreements, demonstrating that the mixing process of granular materials occurred through the diffusion mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号