首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
A nonlocal strain gradient theory(NSGT) accounts for not only the nongradient nonlocal elastic stress but also the nonlocality of higher-order strain gradients,which makes it benefit from both hardening and softening effects in small-scale structures.In this study, based on the NSGT, an analytical model for the vibration behavior of a piezoelectric sandwich nanobeam is developed with consideration of flexoelectricity. The sandwich nanobeam consists of two piezoelectric sheets and a non-piezoelec...  相似文献   

2.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   

3.
Variational principles for the buckling and vibration of multi-walled carbon nanotubes (MWCNTs) are established with the aid of the semi-inverse method. They are used to derive the natural and geometric boundary conditions coupled by small scale parameters. Hamilton's principle and Rayleigh's quotient for the buckling and vibration of the MWCNTs are given. The Rayleigh-Ritz method is used to study the buckling and vibration of the single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) with three typical boundary conditions. The numerical results reveal that the small scale parameter, aspect ratio, and boundary conditions have a profound effect on the buckling and vibration of the SWCNTs and DWCNTs.  相似文献   

4.
Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plasticity theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.  相似文献   

5.
本文提出了一种新的能够计及尺度效应的微纳米蜂窝等效模量的计算方法。将一种单参数应变梯度理论引入到本构方程当中,并基于能量等效原理推导了蜂窝面内等效模量地计算公式。算例分析表明,本文方法能够有效地计及尺度效应对蜂窝等效模量的影响。尺度效应与胞壁厚度和长度的值都有关,当胞壁厚度较小时,尺度效应显著,本文方法预测的模量会明显高于传统方法;而当胞壁厚度较大时,尺度效应变得微弱乃至可以忽略不计。但如果胞壁的长度/厚度比很大,则面内等效模量会趋近于0,此时是否考虑尺度效应意义不大。  相似文献   

6.
为利用球面波实验测得的有限个粒子速度信息来分析地下爆炸下介质的运动及变形特性,基于黏弹性球面波理论和局部黏弹性等效假设,提出了一种构建地下爆炸运动及变形场的新方法。首先,利用0.125 g TNT填实爆炸下花岗岩中相邻测点的粒子速度频谱给出相应的频谱比;其次,结合黏弹性球面波理论给出的理论频谱比求解出相邻测点之间区域内等效的球面波传播系数;再次,利用局部黏弹性等效假设给出相邻测点之间任意一点的粒子速度频谱,再通过傅里叶逆变换给出粒子速度的时域波形;最后,利用运动场和变形场的物理关系,完成整个分析区域内运动场和变形场的构建。结果表明:由相邻测点反演得到的波传播系数,可高精度地构建相应测点之间区域内介质的运动及变形场;在半径15~50 mm区域内,径向压缩应变峰值约从1.7×10^-2降为2.1×10^-3,切向拉伸应变峰值约从4.7×10^-3降为0.4×10^-3,径向压缩应变率峰值约从5.1×10^4 s^-1降为2.5×10^3 s^-1,切向拉伸应变率峰值约从5.0×10^3 s^-1降为1.4×10^2 s^-1,涵盖了高应变(率)到中低应变(率)加、卸载的全过程。  相似文献   

7.
The vibration characteristics of a functionally graded material circular cylindrical shell filled with fluid are examined with a wave propagation approach. The shell is filled with an incompressible non-viscous fluid. Axial modal dependence is approximated by exponential functions. A theoretical study of shell vibration frequencies is analyzed for simply supported-simply supported, clamped-simply supported, and clamped-clamped boundary conditions with the fluid effect. The validity and the accuracy of the present method are confirmed by comparing the present results with those available in the literature. Good agreement is observed between the two sets of results.  相似文献   

8.
Features of the propagation of longitudinal and transverse plane waves along the layers of nanocomposites with process-induced initial stresses are studied. The composite has a periodic structure: it is made by repeating two highly dissimilar layers. The layers exhibit nonlinear elastic behavior in the range of loads under consideration. A Murnaghan-type elastic potential dependent on the three invariants of the strain tensor is used to describe the mechanical behavior of the composite constituents. To simulate the propagation of waves, finite-strain theory is used for developing a problem statement within the framework of the three-dimensional linearized theory of elasticity assuming finite initial strains. The dependence of the relative velocities of longitudinal and transverse waves on two components of small initial stresses in each layer and on the volume fraction of the constituents is studied. It is established that there are thickness ratios of layers in some nanocomposites such that the wave velocities are independent of the initial stresses and equal to the respective wave velocities in composites without initial stresses __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 4, pp. 3–26, April 2007.  相似文献   

9.
By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded material (FGM) are examined. To take small scale effects into consideration in a more accurate way, a nonlocal stress field parameter and an internal length scale parameter are incorporated simultaneously into an exponential shear deformation shell theory. The variation of material properties associated with FGM nanoshells is supposed along the shell thickness, and it is modeled based on the Mori-Tanaka homogenization scheme. With a boundary layer theory of shell buckling and a perturbation-based solving process, the nonlocal strain gradient load-deflection and load-shortening stability paths are derived explicitly. It is observed that the strain gradient size effect causes to the increases of both the critical axial buckling load and the width of snap-through phenomenon related to the postbuckling regime, while the nonlocal size dependency leads to the decreases of them. Moreover, the influence of the nonlocal type of small scale effect on the axial instability characteristics of FGM nanoshells is more than that of the strain gradient one.  相似文献   

10.
The dynamic characteristics of a quartz crystal resonator(QCR) in thicknessshear modes(TSM) with the upper surface covered by an array of micro-beams immersed in liquid are studied. The liquid is assumed to be inviscid and incompressible for simplicity. Dynamic equations of the coupled system are established. The added mass effect of liquid on micro-beams is discussed in detail. Characteristics of frequency shift are clarified for different liquid depths. Modal analysis shows that a drag effect of liquid has resulted in the change of phase of interaction(surface shear force), thus changing the system resonant frequency. The obtained results are useful in resonator design and applications.  相似文献   

11.
A quasi-three dimensional model is proposed for the vibration analysis of functionally graded(FG) micro-beams with general boundary conditions based on the modified strain gradient theory. To consider the effects of transverse shear and normal deformations, a general displacement field is achieved by relaxing the assumption of the constant transverse displacement through the thickness. The conventional beam theories including the classical beam theory, the first-order beam theory, and the higher...  相似文献   

12.
Mindlin’s (1965) second strain gradient theory due to its competency in capturing the effects of edges, corners, and surfaces is of particular interest. Formulation in this framework, in addition to the usual Lamé constants, requires the knowledge of sixteen additional materials constants. To date, there are no successful experimental techniques for measuring these material parameters which reflect the discrete nature of matter. The present work gives an accurate remedy for the atomistic calculations of these parameters by utilizing the first principles density functional theory (DFT) for the calculations of the atomic force constants combined with an analytical formulation. It will be shown that writing the consistency conditions obtained from the equivalency between the atomistic crystal lattice dynamics of the bulk material and its counterpart in the second strain gradient elasticity is insufficient for the calculations of all the additional constants. As it will be discussed, there are two missing conditions which are then provided by consideration of the free standing film problem that bring the surface effect into account. As a consequence of surface effect consideration, the modulus of cohesion which is one of the important additional constants is calculated. Moreover, an analytical expression for the surface energy in terms of the modulus of cohesion, Lamé constants, materials characteristic lengths, and the film thickness is presented. If the film thickness is much bigger than the magnitude of the characteristic lengths of the material, then the surface energy would no longer depend on the film thickness.  相似文献   

13.
Two improved isogeometric quadratic elements and the central difference scheme are used to formulate the solution procedures of transient wave propagation problems. In the proposed procedures, the lumped matrices corresponding to the isogeometric elements are obtained. The stability conditions of the solution procedures are also acquired. The dispersion analysis is conducted to obtain the optimal Courant-Friedrichs-Lewy (CFL) number or time-step sizes corresponding to the spatial isogeometric elements. The dispersion analysis shows that the isogeometric quadratic element of the fourth-order dispersion error (called the isogeometric analysis (IGA)-f quadratic element) provides far more desirable numerical dissipation/dispersion than the element of the second-order dispersion error (called the IGA-s quadratic element) when appropriate time-step sizes are selected. The numerical simulations of one-dimensional (1D) transient wave propagation problems demonstrate the effectiveness of the proposed solution procedures.  相似文献   

14.
Applied Mathematics and Mechanics - The type B aortic dissection (TBAD) is a perilous disease with high morbidity and mortality rates. The hemodynamics of TBAD in different scenarios has been...  相似文献   

15.
运用边光滑有限元法,研究分析了加筋板结构的静力和自由振动问题。在边光滑有限元法中,将基于边的应变光滑技术用于对原来的应变场进行光滑操作;由于应变光滑技术能够适当地软化原来过刚的有限元模型,从而能够得到更加接近于系统准确刚度的光滑有限元模型;鉴于三角形单元良好的适用性,选用三角形单元对模型进行网格划分;同时,为了解决低阶Reissner-Mindlin板单元弯曲过程中的横向剪切自锁问题,采用了一种新型的离散剪切间隙技术。算例的数值计算结果表明,与传统的有限元法相比,边光滑有限元法能够得到精度更高的计算结果,且收敛更快,计算效率更佳。  相似文献   

16.
This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.  相似文献   

17.
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress,the modified couple stress theory(MCST),and the nonlocal elasticity theories using the differential quadrature method(DQM)is presented.Main advantages of the MCST over the classical theory(CT)are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter.Based on the nonlinear von K′arm′an assumption,the governing equations of equilibrium for the micro-classical plate considering midplane displacements are derived based on the minimum principle of potential energy.Using the DQM,the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained.Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature.A parametric study is conducted to show the effects of the aspect ratio,the side-to-thickness ratio,Eringen’s nonlocal parameter,the material length scale parameter,Young’s modulus of the surface layer,the surface residual stress,the polymer matrix coefficients,and various boundary conditions on the dimensionless uniaxial,biaxial,and shear critical buckling loads.The results indicate that the critical buckling loads are strongly sensitive to Eringen’s nonlocal parameter,the material length scale parameter,and the surface residual stress effects,while the effect of Young’s modulus of the surface layer on the critical buckling load is negligible.Also,considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate.The results show that the critical biaxial buckling load increases with an increase in G12/E2and vice versa for E1/E2.It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude.Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios,it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.  相似文献   

18.
Large eddy simulations (LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density (FSD) model incorporated with two different wrinkling factor models, i.e., the Muppala and Charlette2 wrinkling factor models, is used to describe combustion/turbulence interaction, and the flamelet generated manifolds (FGM) method is employed to determine major scalars. This coupled sub-grid scale (SGS) combustion model is named as the FSD-FGM model. The FGM method can provide the detailed species in the flame which cannot be obtained from the origin FSD model. The LES results show that the FSD-FGM model has the ability of describing flame propagation, especially for stratified flames. The Charlette2 wrinkling factor model performs better than the Muppala wrinkling factor model in predicting the flame surface area change by the turbulence. The combustion characteristics are analyzed in detail by the flame index and probability distributions of the equivalence ratio and the orientation angle, which confirms that for the investigated stratified flame, the dominant combustion modes in the upstream and downstream regions are the premixed mode and the back-supported mode, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号