首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Extrusion processing is a technology applied in the food and pharmaceutical industry for affecting product microstructure, product chemistry or the macroscopic shape of products. Starch based products are often extruded to break down the starch granule to render it digestible and to produce a shaped product. Encapsulation of flavors, nutrients and drugs is another frequent application of extrusion processing. This short review article is concerned with the use of extrusion processes to modify polysaccharide functionality. Extrusion processes are applied to polysaccharides for specific purposes such as physical modification or chemical modification (reactive extrusion), manufacture of confectionary gels and encapsulation of flavors or drugs. Non-starch polysaccharides and confectionary gels have also been extruded. Another application area is in the field of dietary fibers, obtained through extrusion processing of by- or waste-products of the food industry. The focus of this article is on extruding starch and other polysaccharides as an ingredient rather than as part of a final food product obtained by extrusion processing. It concludes with a discussion on extrusion as microstructure generating process and the relevance of this application to taste perception in semi-liquid foods.  相似文献   

2.
There is a desire to alter food composition to make foods healthier and at the same time not diminish sensory quality. This requires an understanding of key elements of food structure associated with texture perception. Texture, in part, is perceived during oral processing of food. Knowledge of structure–oral processing–texture interrelations could be utilized to develop or prevent specified textural attributes. Overall, the investigation of structure–oral processing–texture interrelations is just starting as a research focus. Factors including non-universal and inconsistent sensory terminology, omission of consideration for structural changes incurred by oral processes, and the lack of cross-disciplinary investigations hamper progress in this field. Consideration of these factors in future investigations on sensory texture will increase the applicability of their findings and bring us closer to understanding the contribution of food structure to sensory texture.  相似文献   

3.
Recently, considerable attention has been given to the understanding of texture attributes that cannot directly be related to physical properties of food, such as creamy, crumbly and watery. The perception of these attributes is strongly related to the way the food is processed during food intake, mastication, swallowing of it and during the cleaning of the mouth after swallowing. Moreover, their perception is modulated by the interaction with other basic attributes, such as taste and aroma attributes (e.g. sourness and vanilla). To be able to link the composition and structure of food products to more complicated texture attributes, their initial physical/colloid chemical properties and the oral processing of these products must be well understood. Understanding of the processes in the mouth at colloidal length scales turned out to be essential to grasp the interplay between perception, oral physiology and food properties. In view of the huge differences in physical chemical properties between food products, it is practical to make a distinction between solid, semi-solid, and liquid food products. The latter ones are often liquid dispersions of emulsion droplets or particles in general. For liquid food products for instance flow behaviour and colloidal stability of dispersed particles play a main role in determining their textural properties. For most solid products stiffness and fracture behaviour in relation to water content are essential while for semi-solids a much larger range of mechanical properties will play a role. Examples of colloidal aspects of texture perception will be discussed for these three categories of products based on selected sensory attributes and/or relevant colloidal processes. For solid products some main factors determining crispness will be discussed. For crispiness of dry cellular solid products these are water content and the architecture of the product at mesoscopic length scales (20-1000 µm). In addition the distribution of water at mesoscopic length scales was found to be important. For semi-solid foods, sensory characteristics as spreadability, watery and crumbliness are primarily determined by food properties at mesoscopic length scales. Crumbliness is directly related to the formation of free running cracks that occur during eating of the product. Exudation of the continuous liquid phase of gels during compression gives rise to watery/juicy sensory attributes. For liquid food products, colloidal interactions of emulsion droplets, particles, proteins, and polysaccharides with saliva and oral surfaces were found to affect texture characteristics as creaminess, fattiness, roughness and astringency.  相似文献   

4.
Smell and taste (flavour) are important quality parameters of foods caused by chemicals. However, odour and taste active compounds occuring naturally in foods show extreme differences in their odour and taste activity defined as ratio of concentration to sensory threshold. Based on several examples, the use of activity guided screening procedures to unravel the natural odour and taste compounds in foods is presented in the paper. These techniques assigned as „molecular sensing”︁ have recently led to the identification of very potent natural food constituents with interesting sensory properties. Furthermore, such sensorially active compounds can be used as markers to steer food manufacturing in order to optimize the overall flavours.  相似文献   

5.
As the very first step of food consumption, food oral processing is not only of great importance to food intake and the following digestion and adsorption, but also provides the necessary sensory attributes that please the consumer. Starting from the first bite, to oral manipulation including mastication and transportation, until bolus formation and swallowing, food products undergo a variety of physical and biochemical changes over a wide range of time and length scales. A number of efforts had been made to uncover the mechanisms in each oral processing step; some of which are still poorly understood. This review covers some of the most recent progress made in the area of food oral processing, with an emphasis on eating and swallowing difficulties in the elderly and the corresponding model food development. It also includes the oral surface coating and lubrication and the dynamic textural perception during food oral processing. The authors hope that this will facilitate food scientists, psychologists, dentists and other clinical researchers to further understand and reveal the detailed controlling mechanisms and governing principles of food oral processing.  相似文献   

6.
Texture and mouthfeel arising from the consumption of food and beverages are critical to consumer choice and acceptability. While the food structure design rules for many existing products have been well established, although not necessarily understood, the current drive to produce healthy consumer acceptable food and beverages is pushing products into a formulation space whereby these design rules no longer apply. Both subtle and large scale alterations to formulations can result in significant changes in texture and mouthfeel, even when measurable texture-related quantities such as rheology are the same. However, we are only able to predict sensations at the initial stages of consumption from knowledge of material properties of intact food.Research is now on going to develop strategies to capture the dynamic aspects of oral processing, including: from a sensory perspective, the recent development of Temporal Dominance Sensation; from a material science perspective, development of new in vitro techniques in thin film rheology and tribology as well as consideration of the multifaceted effect of saliva. While in vivo, ex vivo, imitative and empirical approaches to studying oral processing are very insightful, they either do not lend themselves to routine use or are too complex to be able to ascertain the mechanism for an observed behaviour or correlation with sensory. For these reasons, we consider that fundamental in vitro techniques are vital for rational design of food, provided they are designed appropriately to capture the important physics taking place during oral processing. We map the oral breakdown trajectory through 6 stages and suggest a dynamic multi-scale approach to capture underlying physics. The ultimate goal is to use fundamental insights and techniques to design new food and beverages that are healthy yet acceptable to consumers.  相似文献   

7.
Recent studies have made clear that structural and rheological changes of soft foods when they are processed in the mouth play a crucial role in sensory perception. This applies to soft solid products (fracturing behaviour and exudation of fluid) as well as more liquid food systems (breakdown of starch by salivary amylase, saliva-induced droplet aggregation, deposition and retention of food material on the tongue surface).  相似文献   

8.
A review is presented of studies of different processing techniques and their effect on the allergenicity and antigenicity of certain allergenic foods. An overview of investigated technologies is given with regard to their impact on the protein structure and their potential application in the production of hypoallergenic foods. The use of physical processes (such as heating, high pressure, microparticulation, ultrafiltration, and irradiation), chemical processes (such as proteolysis, fermentation, and refining by extraction), and biotechnological approaches, as well as the effects of these processes on individual allergenic foods, are included. Additionally, the implications of food processing for food allergen analysis with respect to food safety assessment and industrial quality control are briefly discussed.  相似文献   

9.
A binary mixture of starch-starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch-based foods and minimize the need to resort to chemically modified starch.  相似文献   

10.
Sensory texture perception is based on food structure and the mastication process. Real-time observations of crack growth and rheological measurements have shown different patterns of microstructural fracture. This has allowed for a reductive approach in consolidating a range of gels into characteristic microstructures and fracture patterns that can be linked to sensory texture.  相似文献   

11.
Umami peptides are naturally found in various foods and have been proven to be essential components contributing to food taste. Defatted peanut powder hydrolysate produced by a multiprotease (Flavorzyme, Alcalase, and Protamex) was found to elicit an umami taste and umami-enhancing effect. The taste profiles, hydrolysis efficiency, amino acids, molecular weight distribution, Fourier transform infrared spectroscopy (FT-IR), and separation fractions obtained by ultrafiltration were evaluated. The results showed that peanut protein was extensively hydrolyzed to give mainly (up to 96.84%) free amino acids and peptides with low molecular weights (<1000 Da). Furthermore, β-sheets were the major secondary structure. Fractions of 1–3000 Da and <1000 Da prominently contributed to the umami taste and umami enhancement. To obtain umami-enhancing peptides, these two fractions were further purified by gel filtration chromatography, followed by sensory evaluation. These peptides were identified as ADSYRLP, DPLKY, EAFRVL, EFHNR, and SDLYVR by ultra-performance liquid chromatography (UPLC), and had estimated thresholds of 0.107, 0.164, 0.134, 0.148, and 0.132 mmol/L, respectively. According to the results of this work, defatted peanut powder hydrolysate had an umami taste and umami-enhancing effect, and is a potential excellent umami peptide precursor material for the food industry.  相似文献   

12.
In food, salt has several key roles including conservative and food perception. For this latter, it is well-known that the interaction of sodium with the food matrix modifies the consumer perception. It is then critical to characterize these interactions in various real foods. For this purpose, we exploited the information obtained on both single and double quantum 23Na nuclear magnetic resonance (NMR) spectroscopies. All salted food samples studied showed strong interactions with the food matrix leading to quadrupolar interactions. However, for some of them, the single quantum analysis did not match the theoretical prediction. This was explained by the presence of another type of sodium population, which did not produce quadrupolar interactions. This finding is of critical importance to perform quantitative magnetic resonance imaging (MRI) and to understand the consumer salty taste perception.  相似文献   

13.
This paper is an overview of the work currently carried out on the microstructural approach to reduce unhealthy ingredients in everyday foods, while maintaining the positive eating aspects of the original product. Fat reduction is discussed in detail as an example of how the approach might be used. In particular, we will cover the very new approach using tribology based physical measurements and relate this to oral response as opposed to using rheological measurements. Materials such as low fat, air/oil-in-water and water-in-water emulsions as well as sheared (or fluid) gels will be discussed as this approach has allowed physical, chemical and sensory properties of high fat content foods to be matched by structures containing considerably less fat. This microstructural approach to the engineering challenge of fat replacement has proved very successful in the development of mayonnaise, cream and sauces with good eating properties. If the approach discussed continues to be developed, they promise significant advancement and rewards on the formulation of healthy everyday foods which are perceived by the consumer as indulgent.  相似文献   

14.
Much of our appreciation of food is due to the excitement of the perception of "sweet" and "umami" taste. With a special focus on natural products, this Review gives a summary of compounds that elicit and modulate "sweet" or "umami" taste responses. It will be discussed how the interaction of these molecules with the oral sweet and umami taste receptors stimulates receptor cells to secrete neurotransmitters to induce neural activity that is conveyed to the cerebral cortex to represent sweet and umami taste, respectively. Recent data also show that a sweet taste is metabolically relevant for fuel homeostasis and linked to appetitive ingestive behavior.  相似文献   

15.
Wheat bread, produced by the single-phase method, is a common food consumed all over the world. Due to changes in lifestyle and nutritional trends, alternative raw materials are sought to increase the nutritional value and improve the taste of daily consumed products. Additionally, customers seek a wide variety of foods, especially when it comes to basic foods. Nuts, such as coconuts or chestnuts, might provide an attractive flavour with benefits to the nutritional quality. In this study, the effect of substituting wheat flour with coconut or chestnut flour (flour contribution level: 5, 10, 15, 30, 50% w/w), was evaluated in terms of the breads specific volume, texture, colour, nutritional composition, and dietary fibre fraction contents. Moreover, a sensory evaluation was conducted to assess potential consumer acceptance. Based on the consumer’s perception, the overall acceptance of bread with 15% w/w of coconut and chestnut flour was in privilege compared to the control sample. As a result, taking all of the tested parameters into account, the breads with 5, 10, and 15% supplementation of chestnut or coconut flour were still of good quality compared to the wheat bread and their fibre content was significantly higher.  相似文献   

16.
《Arabian Journal of Chemistry》2020,13(12):9118-9129
Malic acid, a carboxylic acid most found in fruits, is a smooth taste substance used as flavoring and preservative agent in foods, although not as used as citric acid. There are no studies focusing in quantitative results or investigations on its physicochemical properties, useful to the food industry, or even the confirmation of its calcium chelating, buffer texturizer and antioxidant alleged properties. Thus, the aim of this work was the assessment of most physicochemical properties of malic acid, solid and in solution, that could be useful to the food industry understand its real potential. The following analyses were carried out: melting point; structure (NMR, XRD, FTIR and SEM/EDS); TGA/DTG; solubility, hygroscopicity; antioxidant activity, iron chelating and antibacterial activities and stability of pectin gels. The melting temperature found was 129.71 °C. TGA/DTG exhibited first loss of mass around 140 °C. In the temperature range of 10 to 55 °C, it exhibited a high solubility in water, from 48.12 to 61.49 (100w), respectively. The tested bacteria, related to food spoilage, were inhibited by DL-malic acid 10% or higher. Chelating and antioxidant activities showed expressive results even in 1% solution. Pectin gels with malic acid had stronger structure and less syneresis than citric acid gels. In addition, calcium chelating, buffer texturizer and antioxidant properties were confirmed. Thus, malic acid has potential to be applied in a wide variety of food products as fortified beverages, frozen and refrigerated items, oils, pectin gels, hard and soft candies, and biofilms, due to all the characteristics quantified.  相似文献   

17.
3-MCPD in food other than soy sauce or hydrolysed vegetable protein (HVP)   总被引:3,自引:0,他引:3  
This review gives an overview of current knowledge about 3-monochloropropane-1,2-diol (3-MCPD) formation and detection. Although 3-MCPD is often mentioned with regard to soy sauce and acid-hydrolysed vegetable protein (HVP), and much research has been done in that area, the emphasis here is placed on other foods. This contaminant can be found in a great variety of foodstuffs and is difficult to avoid in our daily nutrition. Despite its low concentration in most foods, its carcinogenic properties are of general concern. Its formation is a multivariate problem influenced by factors such as heat, moisture and sugar/lipid content, depending on the type of food and respective processing employed. Understanding the formation of this contaminant in food is fundamental to not only preventing or reducing it, but also developing efficient analytical methods of detecting it. Considering the differences between 3-MCPD-containing foods, and the need to test for the contaminant at different levels of food processing, one would expect a variety of analytical approaches. In this review, an attempt is made to provide an up-to-date list of available analytical methods and to highlight the differences among these techniques. Finally, the emergence of 3-MCPD esters and analytical techniques for them are also discussed here, although they are not the main focus of this review.  相似文献   

18.
The importance of monitoring key aroma compounds as food characteristics to solve sample classification and authentication is increasing. The rhizome of Polygonatum sibiricum (PR, Huangjing in Chinese) has great potential to serve as an ingredient of functional foods owing to its tonic effect and flavor properties. In this study, we aimed to characterize and classify PR samples obtained from different processing levels through their volatile profiles and flavor properties by using electronic nose, electronic tongue, and headspace gas chromatography-mass spectrometry. Nine flavor indicators (four odor indicators and five taste indicators) had a strong influence on the classification ability, and a total of 54 volatile compounds were identified in all samples. The traditional Chinese processing method significantly decreased the contents of aldehydes and alkanes, while more ketones, nitrogen heterocycles, alcohols, terpenoids, sulfides, and furans/pyrans were generated in the processing cycle. The results confirmed the potential applicability of volatile profiles and flavor properties for classification of PR samples, and this study provided new insights for determining the processing level in food and pharmaceutical industries based on samples with specific flavor characteristics.  相似文献   

19.
The minimally processed food provided the consumer with a product quality, safety and practicality. However, minimal processing of food does not reduce pathogenic population of microorganisms to safe levels. Ionizing radiation used in low doses is effective to maintain the quality of food, reducing the microbiological load but rather compromising the nutritional values and sensory property. The association of minimal processing with irradiation could improve the quality and safety of product. The purpose of this study was to evaluate the effectiveness of low-doses of ionizing radiation on the reduction of microorganisms in minimally processed foods. The results show that the ionizing radiation of minimally processed vegetables could decontaminate them without several changes in its properties.  相似文献   

20.
Thermal analysis,state transitions and food quality   总被引:3,自引:0,他引:3  
Thermal properties of food systems are important in understanding relationships between food properties and changes in food quality. Concentrated food systems (low-moisture and frozen foods) are seldom in an equilibrium state and they tend to form amorphous, non-crystalline structures. Several glass transition-related changes in such foods affect stability, e.g., stickiness and caking of powders, crispness of snack foods and breakfast cereals, crystallisation of amorphous sugars, recrystallisation of gelatinised starch, ice formation and recrystallisation in frozen foods and rates of non-enzymatic browning and enzymatic reactions. Relationships between glass transition, water plasticisation and relaxation times can be shown in state diagrams. State diagrams are useful as stability or quality maps and in the control of rates of changes in food processing and storage.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号