首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drug delivery systems, including liposomes, gels, prodrugs, and so forth, are used to enhance the tissue benefit of a pharmaceutical drug or conventional substance at a specific diseased site with little toxicological impact. Nanotechnology can be a rapidly developing multidisciplinary science that enables the production of polymers at the manometer scale for different medical applications. The use of biopolymers in drug delivery systems provides compatibility, biodegradability and low immunogenicity biologically. Large-scale and smaller-than-expected medication particles can be delivered using biopolymers such as silk fibroins, collagen, gelatine, and others that are easily formed into suspensions. These drug carrier systems are functional at improving drug delivery and can be used in intranasal, transdermal, dental, and ocular delivery systems. This study discusses the latest developments in drug delivery methods based on nanomaterials, mainly using biopolymers like proteins and polysaccharides.  相似文献   

2.
Cyclodextrins in Eye Drop Formulations   总被引:1,自引:0,他引:1  
Ideally, eye drop formulations are aqueous solutions. Many drugs that are useful in topical application to the eye are not sufficiently water soluble to be dissolved in simple aqueous solutions. This problem is approached through hydrophilic prodrugs, suspensions, lipid based solutions and excipients such as cyclodextrins. Cyclodextrins can be used to form aqueous eye drop solutions with lipophilic drugs, such as steroids. The cyclodextrins increase the water solubility of the drug, enhance drug absorption into the eye, improve aqueous stability and reduce local irritation. Cyclodextrins are useful excipients in eye drop formulations of various ophthalmic drugs, including steroids of any kind, carbonic anhydrase inhibitors, pilocarpine and cyclosporins. Their use in ophthalmology has already begun and it is likely to expand the selection of drugs available as eye drops. In this paper we review the use of cyclodextrins in eye drop formulations. The use of cyclodextrins to formulate dexamethasone eye drops is an example of their usefulness. Cyclodextrins have been used to formulate eye drops containing corticosteroids, such as dexamethasone, with concentration and ocular absorption, which in human and animal studies is many fold that seen with presently available formulations. Such formulations offer the possibility of once a day application of corticosteroid eye drops after eye surgery, and more intensive topical steroid treatment in severe inflammation.  相似文献   

3.
A coumarin-based prodrug system has been recently developed in our laboratory for the preparation of esterase-sensitive prodrugs of amines, peptides, and peptidomimetics. The drug release rates from this prodrug system were found to be dependent on the structural features of the drug moiety. In certain cases, the release can be undesirably slow for drugs that are secondary amines with relatively high pKa's. Aimed at finding ways to manipulate the release rates to suit the need of different drugs, we have examined the effect of the phenyl ring substitutions on the release kinetics of such prodrugs and found that appropriately positioned alkyl substituents on the phenyl ring could help to facilitate the release by as much as 16-fold. Therefore, introduction of alkyl substituents on the phenyl ring should allow us to manipulate the release rates and, therefore, time profiles for different drugs.  相似文献   

4.
Dendrimers are a new class of artificial macromolecules with well-defined hyperbranched structures which enable bio-active molecules such as drugs to be presented in a highly multi-valent fashion. Covalent conjugation of drugs to the surface of dendrimers can be easily achieved either by direct chemical reactions between dendrimers and drug molecules including esterification and amidation or through cleavable linkers, depending on the functional groups on the surface of dendrimers. The pharmacological properties of these dendrimer-based prodrugs such as biocompatibility, biodistribution, biostability, bioadhesion and biopermeability can be modulated by further modifying dendrimers with specific functional molecules to fit a specific medicinal purpose. In this mini-review, recent advances on the use of dendrimers as prodrug nano-scaffolds were briefly demonstrated. The design and synthesis of dendrimer-based prodrugs as well as screening their intrinsic properties in biological systems were fully discussed.  相似文献   

5.
Cyclization-activated prodrugs   总被引:1,自引:0,他引:1  
Many drugs suffer from an extensive first-pass metabolism leading to drug inactivation and/or production of toxic metabolites, which makes them attractive targets for prodrug design. The classical prodrug approach, which involves enzyme-sensitive covalent linkage between the parent drug and a carrier moiety, is a well established strategy to overcome bioavailability/toxicity issues. However, the development of prodrugs that can regenerate the parent drug through non-enzymatic pathways has emerged as an alternative approach in which prodrug activation is not influenced by inter- and intraindividual variability that affects enzymatic activity. Cyclization-activated prodrugs have been capturing the attention of medicinal chemists since the middle-1980s, and reached maturity in prodrug design in the late 1990 s. Many different strategies have been exploited in recent years concerning the development of intramoleculary-activated prodrugs spanning from analgesics to anti-HIV therapeutic agents. Intramolecular pathways have also a key role in two-step prodrug activation, where an initial enzymatic cleavage step is followed by a cyclization-elimination reaction that releases the active drug. This work is a brief overview of research on cyclization-activated prodrugs from the last two decades.  相似文献   

6.
Small-molecule prodrugs have become the main toolbox to improve the unfavorable physicochemical properties of potential therapeutic compounds in contemporary anti-cancer drug development. Many approved small-molecule prodrugs, however, still face key challenges in their pharmacokinetic (PK) and pharmacodynamic (PD) properties, thus severely restricting their further clinical applications. Self-assembled prodrugs thus emerged as they could take advantage of key benefits in both prodrug design and nanomedicine, so as to maximize drug loading, reduce premature leakage, and improve PK/PD parameters and targeting ability. Notably, temporally and spatially controlled release of drugs at cancerous sites could be achieved by encoding various activable linkers that are sensitive to chemical or biological stimuli in the tumor microenvironment (TME). In this review, we have comprehensively summarized the recent progress made in the development of single/multiple-stimulus-responsive self-assembled prodrugs for mono- and combinatorial therapy. A special focus was placed on various prodrug conjugation strategies (polymer–drug conjugates, drug–drug conjugates, etc.) that facilitated the engineering of self-assembled prodrugs, and various linker chemistries that enabled selective controlled release of active drugs at tumor sites. Furthermore, some polymeric nano-prodrugs that entered clinical trials have also been elaborated here. Finally, we have discussed the bottlenecks in the field of prodrug nanoassembly and offered potential solutions to overcome them. We believe that this review will provide a comprehensive reference for the rational design of effective prodrug nanoassemblies that have clinic translation potential.

Various prodrug conjugation strategies and innovative linker chemistries that exploit tumor-associated stimuli are summarized in this review to provide deep insights into the engineering of self-assembled prodrugs for efficient cancer therapy.  相似文献   

7.
The synthesis of polymer–drug conjugates from prodrug monomers consisting of a cyclic polymerizable group that is appended to a drug through a cleavable linker is achieved by organocatalyzed ring‐opening polymerization. The monomers polymerize into well‐defined polymer prodrugs that are designed to self‐assemble into nanoparticles and release the drug in response to a physiologically relevant stimulus. This method is compatible with structurally diverse drugs and allows different drugs to be copolymerized with quantitative conversion of the monomers. The drug loading can be controlled by adjusting the monomer(s)/initiator feed ratio and drug release can be encoded into the polymer by the choice of linker. Initiating these monomers from a poly(ethylene glycol) macroinitiator results in amphiphilic diblock copolymers that spontaneously self‐assemble into micelles with a long plasma circulation, which is useful for systemic therapy.  相似文献   

8.
Macromolecular prodrugs are very useful systems for achieving controlled drug release and drug targeting. In particular, various macromolecule-antitumor drug conjugates enhance the effectiveness and improve the toxic side effects. Also, polymeric micro- and nanoparticles have been actively examined and their in vivo behaviors elucidated, and it has been realized that their particle characteristics are very useful to control drug behavior. Recently, researches based on the combination of the concepts of macromolecular prodrugs and micro- or nanoparticles have been reported, although they are limited. Macromolecular prodrugs enable drugs to be released at a certain controlled release rate based on the features of the macromolecule-drug linkage. Micro- and nanoparticles can control in vivo behavior based on their size, surface charge and surface structure. These merits are expected for systems produced by the combination of each concept. In this review, several micro- or nanoparticles composed of macromolecule-drug conjugates are described for their preparation, in vitro properties and/or in vivo behavior.  相似文献   

9.
Prodrugs are biologically inactive derivatives of an active drug intended to solve certain problems of the parent drug such as toxicity, instability, minimal solubility and non-targeting capabilities. The majority of drugs for cardiovascular diseases undergo first-pass metabolism, resulting in drug inactivation and generation of toxic metabolites, which makes them appealing targets for prodrug design. Since prodrugs undergo a chemical reaction to form the parent drug once inside the body, this makes them very effective in controlling the release of a variety of compounds to the targeted site. This review will provide the reader with an insight on the latest developments of prodrugs that are available for treating a variety of cardiovascular diseases. In addition, we will focus on several drug delivery methodologies that have merged with the prodrug approach to provide enhanced target specificity and controlled drug release with minimal side effects.  相似文献   

10.
This review describes specific strategies for targeting to the central nervous system (CNS). Systemically administered drugs can reach the brain by crossing one of two physiological barriers resistant to free diffusion of most molecules from blood to CNS: the endothelial blood-brain barrier or the epithelial blood-cerebrospinal fluid barrier. These tissues constitute both transport and enzymatic barriers. The most common strategy for designing effective prodrugs relies on the increase of parent drug lipophilicity. However, increasing lipophilicity without a concomitant increase in rate and selectivity of prodrug bioconversion in the brain will result in failure. In these regards, consideration of the enzymes present in brain tissue and in the barriers is essential for a successful approach. Nasal administration of lipophilic prodrugs can be a promising alternative non-invasive route to improve brain targeting of the parent drugs due to fast absorption and rapid onset of drug action. The carrier-mediated absorption of drugs and prodrugs across epithelial and endothelial barriers is emerging as another novel trend in biotherapeutics. Several specific transporters have been identified in boundary tissues between blood and CNS compartments. Some of them are involved in the active supply of nutrients and have been used to explore prodrug approaches with improved brain delivery. The feasibility of CNS uptake of appropriately designed prodrugs via these transporters is described in detail.  相似文献   

11.
王君莲  郝红  王扬  石梅 《化学通报》2011,74(2):131-136
高分子前药可以控制药物释放速度,降低小分子药物的毒副作用,减少抗药性,增强抗肿瘤药物的靶向性和选择性,提高多肽、蛋白质和核酸类药物的稳定性和有效利用率,引起国内外广泛关注.本文综述了近年来高分子药物的研究进展,主要从高分子载体材料的选择与改性对载药量、生物相容性和肾排泄的影响,以及化学合成过程中载体和药物末端的修饰、空...  相似文献   

12.
Although multitargeted PtIV anticancer prodrugs have shown significant activities in reducing drug resistance, the types of bioactive ligands and drugs that can be conjugated to the Pt center remain limited to O-donors. Herein, we report the synthesis of PtIV complexes bearing axial pyridines via ligand exchange reactions. Unexpectedly, the axial pyridines are quickly released after reduction, indicating their potential to be utilized as axial leaving groups. We further expand our synthetic approach to obtaining two multitargeted PtIV prodrugs containing bioactive pyridinyl ligands: a PARP inhibitor and an EGFR tyrosine kinase inhibitor; these conjugates exhibit great potential for overcoming drug resistance, and the latter conjugate inhibits the growth of Pt-resistant tumor in vivo. This research adds to the array of synthetic methods for accessing PtIV prodrugs and significantly increases the types of bioactive axial ligands that can be conjugated to a PtIV center.  相似文献   

13.
Cidofovir (HPMPC, Vistide®) is a broad-spectrum anti-viral agent that is used to treat AIDS-related CMV retinitis. Currently, cidofovir is of particular interest as a potential therapy for orthopox virus infections, including smallpox. An important limitation of cidofovir and analogous nucleotide drugs in a therapeutic role is their low oral bioavailability and poor transport into cells. In principle, bioavailability of a drug can be improved by structural modification targeting transporters expressed in human intestine. To be effective, the transported prodrug must be cleaved by endogenous enzymes to its parent compound. In this work, three examples of novel cyclic cidofovir (cHPMPC) prodrugs incorporating dipeptides were synthesized and evaluated in a rat oral bioavailability model, in which the prodrugs showed significantly enhanced transport vs. HPMPC and cHPMPC. The prodrugs inhibited Gly-Sar uptake in a competitive binding assay using DC5 cells over-expressing hPepT1.  相似文献   

14.
The binding of charged drugs to neutral phosphatidylcholine membranes was assessed by measuring their zeta-potential values in the presence of different drug concentrations. This methodology was applied to the study of the concentration effects of two nonsteroidal antiinflammatory drugs (NSAIDs). Results revealed an intense membrane charging that was proportional to the amount of negatively charged drug in the media. A mathematical formalism was adapted and an analytical expression derived to calculate directly surface potentials from zeta-potential data. The membrane loading state, expressed as the number of molecules per unit area, was calculated for the negative and for the neutral forms of the drugs. An approach was also developed that allows the determination of the maximum number of molecules per unit area by fitting a binding isotherm to the dependence of the number molecules per unit area with the drug concentration. The calculation of the maximum mol lipid/drug ratio can also be estimated and related to the binding stoichiometry, as well as to the maximum lipid loading capacity. Furthermore, the concentration profiles for both drugs can be established in terms of the distance to the liposome surface. The developed methodology allowed for the simultaneous determination of partition coefficients (Kp) for the NSAIDs in lipid/aqueous media because zeta-potential values can be related to the drug concentration at the lipid/ aqueous media interface. Alternative independent methodologies were used to determine Kp: spectrophotometric and centrifugation assays. A mathematical relation was developed to compare the Kp values determined from the zeta-potential data with those obtained from the other techniques used because in the former case they are calculated on the basis of the number of molecules per unit area and in the latter on the basis of the total drug concentrations in solution, and the values of the partition coefficients obtained from all the techniques were found to be equal, within the experimental error. This methodology constitutes a more straightforward method than the other techniques used because partition coefficients for all drug forms (charged and noncharged) can be assessed with a minimum number of experimental determinations and it allows for a characterization of the electrostatic properties of neutral membranes upon binding of charged drugs.  相似文献   

15.
The stability and bioavailability of anticancer agents, such as gemcitabine, can be increased by forming prodrugs. Gemcitabine is rapidly deaminated to the inactive metabolite (2('),2(')-difluorodeoxyuridine), thus to improve its stability a series of increasingly lipophilic gemcitabine prodrugs linked through the 4-amino group to valeroyl, lauroyl, and stearoyl acyl chains were synthesized. Studies of monolayer properties are important to improve understanding of biological phenomena involving lipid/gemcitabine or lipid/gemcitabine derivative interactions. The interfacial behavior of monolayers constituted by DMPC plus gemcitabine or lipophilic gemcitabine prodrugs at increasing molar fractions was studied at the air/water interface at temperatures below (10 degrees C) and above (37 degrees C) the lipid phase transition. The effect of the hydrophobic chain length of gemcitabine derivatives on the isotherm of pure DMPC was investigated by surface tension measurement, and the results are reported as molar fractions as a function of mean molecular area per molecule. The results show that the compounds interact with DMPC producing mixed monolayers that are subject to an expansion effect, depending on the prodrug chain length. The results give useful hints of the interaction of these prodrugs with biological membranes and increase knowledge on the incorporation site of such compounds, as a function of their lipophilicity, in a lipid carrier; they may lead to improved liposomal formulation design.  相似文献   

16.
Liposomes are effective nanocarriers due to their ability to deliver encapsulated drugs to diseased cells. Nevertheless, liposome delivery would be improved by enhancing the ability to control the release of contents at the target site. While various stimuli have been explored for triggering liposome release, enzymes provide excellent targets due to their common overexpression in diseased cells. We present a general approach to enzyme-responsive liposomes exploiting targets that are commonly aberrant in disease, including esterases, phosphatases, and β-galactosidases. Responsive lipids correlating with each enzyme family were designed and synthesized bearing an enzyme substrate moiety attached via a self-immolating linker to a non-bilayer lipid scaffold, such that enzymatic hydrolysis triggers lipid decomposition to disrupt membrane integrity and release contents. Liposome dye leakage assays demonstrated that each enzyme-responsive liposome yielded significant content release upon enzymatic treatment compared to minimal release in controls. Results also showed that fine-tuning liposome composition was critical for controlling release. DLS analysis showed particle size increases in the cases of esterase- and β-galactosidase-responsive lipids, supporting alterations to membrane properties. These results showcase an effective modular strategy that can be tailored to target different enzymes, providing a promising new avenue for advancing liposomal drug delivery.  相似文献   

17.
Drug delivery systems (DDS) are used to achieve a higher therapeutic effects of a pharmaceutical drug or natural compound in a specific diseased site with minimal toxicological effect and these systems consists of liposomes, microspheres, gels, prodrugs and many. Nanotechnology is a rapidly developing multi-disciplinary science that ensures the fabrication of the polymers to nanometer scale for various medical applications. Uses of biopolymers in DDS ensure the biocompatibility, biodegradability and low immunogenicity over the synthetic ones. Biopolymers such as silk fibroins, collagen, gelatin, albumin, starch, cellulose and chitosan can be easily made into suspension that serve as delivery vehicles for both macro and mini drug molecules. There are various methods such as supercritical fluid extraction, desolvation, electrospraying, spray-drying, layer-by-layer self-assembly, freeze-drying and microemulsion introduced to make these DDS. This drug carrier systems enhance the drug delivery actively and can be used in ocular, transdermal, dental or intranasal delivery systems. This review describes the new trends in nanomaterials based drug delivery systems mainly using biopolymers such as proteins (silk fibroin, collagen, gelatin and albumin) and polysaccharides (chitosan, alginate, cellulose and starch).  相似文献   

18.
Molecular interactions between paclitaxel, an anticancer drug, and phospholipids of various chain unsaturations and headgroup types were investigated in the present study by Langmuir film balance and differential scanning calorimetry. Both the lipid monolayer at the air-water interface and the lipid bilayer vesicles (liposomes) were employed as model cell membranes. It was found that, regardless of the difference in molecular structure of the lipid chains and headgroup, the drug can form nonideal, miscible systems with the lipids at the air-water interface over a wide range of paclitaxel mole fractions. The interaction between paclitaxel and phospholipid within the monolayer was dependent on the molecular area of the lipids at the interface and can be explained by intermolecular forces or geometric accommodation. Paclitaxel is more likely to form thermodynamically stable systems with 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) and 1,2-dielaidoyl-sn-glycero-3-phosphocholine (DEPC) than with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). Investigation of the drug penetration into the lipid monolayer showed that DPPC and DEPC have higher incorporation abilities for the drug than DPPE and DSPC. A similar trend was also evidenced by DSC investigation with liposomes. While little change of DSC profiles was observed for the DPPE/paclitaxel and DSPC/paclitaxel liposomes, paclitaxel caused noticeable changes in the thermographs of DPPC and DEPC liposomes. Paclitaxel was found to cause broadening of the main phase transition without significant change in the peak melting temperature of the DPPC bilayers, which demonstrates that paclitaxel was localized in the outer hydrophobic cooperative zone of the bilayer, i.e., in the region of the C1-C8 carbon atoms of the acyl chain or binding at the polar headgroup site of the lipids. However, it may penetrate into the deeper hydrophobic zone of the DEPC bilayers. These findings provide useful information for liposomal formulation of anticancer drugs as well as for understanding drug-cell membrane interactions.  相似文献   

19.
Anti HIV molecules as numerous drugs cannot efficiently penetrate into the brain. Prodrug synthesis and encapsulation into pegylated nanocarriers have been proposed as an approach for brain delivery. Pegylated polymeric nanoparticles and liposomes were chosen to incorporate glycerolipidic prodrugs of didanosine. Differential scanning calorimetry experiments were performed on mixtures of prodrugs and lipids or polymer in order to study their interaction. The optimal incorporation ratios were determined for each prodrug and compared for both types of nanocarriers. All these results would be used to prepare optimised formulations of didanosine prodrugs loaded into pegylated nanocarriers for brain drug delivery.  相似文献   

20.
Bao C  Jin M  Li B  Xu Y  Jin J  Zhu L 《Organic & biomolecular chemistry》2012,10(27):5238-5244
A series of anticancer prodrugs with different chemical functional groups were prepared, in which the styryl conjugated 2-nitrobenzyl derivatives were introduced as the phototrigger to regulate the drug (chlorambucil) release. Compared to the common 4,5-dimethoxy-2-nitrobenzyl caged compounds, most of the prodrugs exhibited large and redshifted one-photon absorption within the visible range. One-photon excitation for the drug release was studied by measuring UV-vis absorption, FT-IR, and HPLC spectra, which suggested that chlorambucil was released effectively and precisely by manipulating external light conditions. And the introduction of different functional groups made this type of prodrug a good platform to further react with some typical drug carriers and to further form excellent visible light responsive drug delivery systems. Moreover, the drug also could be effectively released under the excitation of two-photon at 800 nm with comparable photorelease efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号