首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2021,32(9):2659-2678
In comparison with lithium-ion batteries (LIBs) with liquid electrolytes, all-solid-state lithium batteries (ASSLBs) have been considered as promising systems for future energy storage due to their safety and high energy density. As the pivotal component used in ASSLBs, composite solid polymer electrolytes (CSPEs), derived from the incorporation of inorganic fillers into solid polymer electrolytes (SPEs), exhibit higher ionic conductivity, better mechanical strength, and superior thermal/electrochemical stability compared to the single-component SPEs, which can significantly promote the electrochemical performance of ASSLBs. Herein, the recent advances of CSPEs applied in ASSLBs are presented. The effects of the category, morphology and concentration of inorganic fillers on the ionic conductivity, mechanical strength, electrochemical window, interfacial stability and possible Li+ transfer mechanism of CSPEs will be systematically discussed. Finally, the challenges and perspectives are proposed for the future development of high-performance CSPEs and ASSLBs.  相似文献   

2.
Li metal batteries are revived as the next-generation batteries beyond Li-ion batteries. The Li metal anode can be paired with intercalation-type cathodes LiMO2 and conversion-type cathodes such as sulfur and oxygen. Then, energy densities of Li/LiMO2 and Li/S,O2 batteries can reach 400 Whkg?1 and more than 500 Whkg?1, respectively, which surpass that of the state-of-the-art LIB (280 Whkg?1). However, replacing the intercalation-type graphite anode with the Li metal anode suffers from low coulombic efficiency during repeated Li plating/stripping processes, which leads to short cycle lifetime and potential safety problems. The key solution is to construct a stable and uniform solid electrolyte interphase with high Li+ transport and high elastic strength on the Li metal anode. This review summarizes recent progress in improving the solid electrolyte interphase by tailoring liquid electrolytes, a classical but the most convenient and cost-effective strategy.  相似文献   

3.
Ceramic fast-ion conductors have high ionic conductivities (>10?4 S cm?1) but are difficult to process and have poor chemo/mechanical properties at the electrode/electrolyte interfaces. In contrast, polymer electrolytes are pliable and easy to process but suffer from low room-temperature ionic conductivities (≈10?6-10?7 S cm?1). Combining these two elements to form a composite polymer electrolyte is a promising way to enable all-solid-state lithium-metal batteries. The choice of ceramic filler and polymer can be tailored to provide synergistic benefits that overcome the practical shortcomings of the two components. Herein, the fundamentals of Li+ conduction through the various phases and interfaces in these materials are discussed as well as the important parameters, beyond the initial choice of polymer and ceramic filler materials that must be considered while designing composite polymer electrolytes. Emphasis is placed on the particle filler engineering and practical fabrication methods as routes toward enhancing the properties of these composites.  相似文献   

4.
Review on gel polymer electrolytes for lithium batteries   总被引:1,自引:0,他引:1  
This paper reviews the state-of-art of polymer electrolytes in view of their electrochemical and physical properties for the applications in lithium batteries. This review mainly encompasses on five polymer hosts namely poly(ethylene oxide) (PEO), poly(acrylonitrile) (PAN), poly(methyl methacrylate) (PMMA), poly(vinylidene fluoride) (PVdF) and poly(vinylidene fluoride-hexafluoro propylene) (PVdF-HFP) as electrolytes. Also the ionic conductivity, morphology, porosity and cycling behavior of PVdF-HFP membranes prepared by phase inversion technique with different non-solvents have been presented. The cycling behavior of LiMn2O4/polymer electrolyte (PE)/Li cells is also described.  相似文献   

5.
Polyacrylonitrile (PAN)-based polymer electrolytes have obtained considerable attention due to their fascinating characteristics such as appreciable ionic conductivity at ambient temperatures and mechanical stability. This study is based on the system PAN–ethylene carbonate (EC)–propylene carbonate (PC)–lithium trifluoromethanesulfonate (LiCF3SO3). The composition 15 mol% PAN–42 mol% EC–36 mol% PC–7 mol% LiCF3SO3 has shown a maximum room temperature conductivity of 1.2?×?10?3 S cm?1. Also, it was possible to make a thin, transparent film out of that composition. Cells of the form, Li/PAN–EC–PC–LiCF3SO3/polypyrrole (PPy)–alkylsulfonate (AS) were investigated using cyclic voltammetry and continuous charge–discharge tests. When cycled at low scan rates, a higher capacity could be obtained and well-defined peaks were present. The appearance of peaks elucidates the fact that redox reactions occur completely. This well proves the reason for higher capacity. The average specific capacity was about 43 Ah kg?1. Cells exhibited a charge factor close to unity during continuous charging and discharging, indicating the absence of parasitic reactions.  相似文献   

6.
Owing to their improved mechanical properties and good polymer miscibility, the blend gel polymer electrolytes of poly (vinylidene fluoride) (PVdF)-poly(ethyl methacrylate) (PEMA) have been prepared using solvent casting technique and characterized for their electrochemical performances. The electrolyte shows a maximum ionic conductivity of 1.5 × 10−4 S cm−1 at 301 K for the 90:10 blend ratio of PVdF:PEMA system with good transport property. The ionic conductivity is enhanced, in accompany with improved microstructural homogeneity, at low PEMA contents, while the decreased conductivity at high contents has been attributed to increasing crystalline PEMA domains. With the optimum PVdF:PEMA ratio, the complex system was found to facile reasonable ionic transference number and exhibit superior interfacial stability with Li electrode.  相似文献   

7.
Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced safety and energy density,the investigation on the electrolytes has leaped form liquid organic electrolytes to solid polymer ones.However,such solid-state Li-S battery system is greatly limited by unfavorable ionic conductivity,poor interfacial contact and narrow electrochemical windows on account of the absence of any liquid components.To address these issues,gel polymer electrolytes(GPEs),the incorporation of liquid electrolytes into solid polymer matrixes,have been newly developed.Although the excellent ionic transport and low interfacial resistance provided by GPEs have prompted numerous researchers to make certain progress on high-performance Li-S coins,a comprehensive review on GPEs for Li-S batteries remains vacant.Herein,this review focuses on recent development and progress on GPEs in view of their physical and chemical properties for the applications in Li-S batteries.Studies on the components including solid hosts,liquid solutions and fillers of GPEs are systematically summarized with particular emphasis on the relationship between components and performance.Finally,current challenges and directional outlook for fabricating GPEs-based Li-S batteries with outstanding performance are outlined.  相似文献   

8.
Polymers based on poly(thylene oxide) (PEO) are a very promising new type of stable electrolytes for lithium rechargeable batteries. Their relatively low ionic conductivities can be more than compensated by the very small electrolyte thicknesses that can be used. Specific energies of 100 Wh/kg at sustained specific powers of 70 W/kg, have been obtained at Hydro-Québec with 100 μm of PEO electrolyte at 100°C. In an electric vehicle, this would give a driving range of over 300 km at 80 km/h, more than three times as much as lead-acid batteries. PEO-related polymers have been developed for lower temperature applications such as computers or portable appliances. Advantages over competitive Ni-Cd batteries are higher energy densities and absence of self-discharge, with expected shell lifes of 10 years. Laboratory prototypes (3600 cm2, 10 Wh) demonstrate the absence of scale-up effects and excellent cycling capability (over 300 charge-discharge cycles).  相似文献   

9.
Shao  Dingsheng  Wang  Xianyou  Li  Xiaolong  Luo  Kaili  Yang  Li  Liu  Lei  Liu  Hong 《Journal of Solid State Electrochemistry》2019,23(10):2785-2792
Journal of Solid State Electrochemistry - The performance of solid-state lithium ion battery mainly depends on the performance of the electrolyte and the interface between the electrolyte and the...  相似文献   

10.
《Mendeleev Communications》2022,32(3):287-297
Moving towards carbon-free energy and global commercialization of electric vehicles stimulated extensive development in the field of lithium-ion batteries (LIBs), and to date, many scientific and technological advances have been achieved. The number of research works devoted to developing high-capacity and stable materials for lithium- ion and lithium metal batteries (LMBs) is constantly rising. This review covers the main progress in the development of LIBs and LMBs based on research works published in 2021. One of the main goals in the recent publications is to solve the problem of instability of layered nickel-rich lithium– nickel–cobalt–manganese oxides (Ni-rich NMC) cathodes, as well as silicon anodes. Improving the stability of NMC cathodes can be achieved by doping them with cations as well as by coating the oxides’ surfaces with protective layers (organic polymers and inorganic materials). The most effective strategies for dampening volumetric changes in silicon anodes include using porous silicon structures, obtaining composites with carbon, coating silicon-containing particles with inorganic or polymeric materials, and replacing standard binder materials. Much work has been devoted to suppressing dendrite formation in LMBs by forming stable coating layers on the surface of lithium metal, preparing composite anodes and alloys, and changing the composition of electrolytes. At the same time, in the field of electrolyte development, many research works have been devoted to the search for new hybrid polymer electrolytes containing lithium-conducting inorganic materials.  相似文献   

11.
This paper presents the results of the thermodynamic calculations of material compatibility along with the results of the experimental studies using lithium aluminosilicate gel electrolyte in lithium batteries. Initially, there were problems with gel monoliths and porous cathodes in the Li solid electrolyte batteries. Better results were obtained through the direct application of thin films of the lithium aluminosilicate gels to the surfaces of dense, sintered oxide cathodes. It was important to maintain extremely low moisture and oxygen levels in the dry glove box during the assembly and testing of the battery, especially when it came to achieving good contact between the sol-gel electrolyte and the lithium metal. Suggestions are given about procedures for further development of the sol-gel electrolyte batteries.  相似文献   

12.
A variety of disubstituted (double-comb) polysiloxane polymers have been prepared containing linear, branched, and cyclic oligoethyleneoxide units, –(OCH2CH2)n–, in the side chains and as part of the siloxane backbone. Copolymers, using mixtures of linear ethylene oxide side chains, were also synthesized. These polymers were doped with LiN(SO2CF3)2 (LiTFSI, 1) and conductivities of the polymer-salt complexes were determined as a function of temperature and doping level. The maximum conductivity of these polymers at 25 ° C was 2.99 ×10–4, for a copolymer containing equimolar amounts of side chains with n = 5 and 6.  相似文献   

13.
As the energy density of state-of-the-art lithium (Li)-ion batteries (LIBs) increases, the safety concern of LIBs using liquid electrolytes is drawing increasing attention. Flammability of electrolytes is a critical link of the overall safety performance of LIBs and Li metal batteries. For this reason, intensive efforts have been devoted to suppressing the flammability of liquid electrolytes. In this short review, the common approaches to reduce the flammability of the nonaqueous liquid electrolytes will be summarized. The advantages and limitations of these approaches will also be discussed.  相似文献   

14.
An overview is presented on the development of improved polymer based electrolytes during the past years. The emphasis lies on new approaches regarding chemical concepts that achieve a higher total conductivity and lithium transference number as well as an increased electrochemical, mechanical and thermal stability. With respect to the polymer chemistry, the focus is laid on siloxane and phosphazene derived systems. Topics are the chemical modification of the polymeric, cyclic and low molecular derivates of these systems, the formation of stable membranes from these by suitable cross-linking strategies and an extensive electrochemical characterization in corresponding lithium cells. Recent trends towards composite and hybrid materials are illustrated with examples and newly developed hybrid electrolytes. A particular chance for improvements comes from the design and use of stable small molecular additives in combination with optimized and electrochemically stable polymer networks. Special compounds are introduced which may act themselves as novel solvents with increased electrochemical stabilities. The relevance of chosen lithium salts for polymer electrolytes is discussed, too, and a new family of pyrazolide anions is introduced. In all cases, the electrochemical performance has been characterized by standard experimental techniques.  相似文献   

15.
Solid electrolytes play a vital role in solid-state Li secondary batteries,which are promising high-energy storage devices for new-generation electric vehicles.Nevertheless,obtaining a suitable solid electrolyte by a simple and residue-free preparation process,resulting in a stable interface between electrolyte and electrode,is still a great challenge for practical applications.Herein,we report a self-crosslinked polymer electrolyte(SCPE)for high-performance lithium batteries,prepared by a one-step method based on 3-methoxysilyl-terminated polypropylene glycol(SPPG,a liquid oligomer).It is worth noting that lithium bis(oxalate)borate(Li BOB)can react with SPPG to form a crosslinked structure via a curing reaction.This self-formed polymer electrolyte exhibits excellent properties,including high roomtemperature ionic conductivity(2.6×10-4 S cm-1),wide electrochemical window(4.7 V),and high Li ion transference number(0.65).The excellent cycling stability(500 cycles,83%)further highlights the improved interfacial stability after the in situ formation of SCPE on the electrode surface.Moreover,this self-formation strategy enhances the safety of the battery under mechanical deformation.Therefore,the present self-crosslinked polymer electrolyte shows great potential for applications in high-performance lithium batteries.  相似文献   

16.
Journal of Solid State Electrochemistry - Ionic liquid (IL)-based solid polymer electrolytes (SPEs) were synthesized by solution cast technique using polymer polyethylene oxide (PEO), lithium...  相似文献   

17.
锂离子电池(lithiumionbatteries,LIBs)在储能领域已取得了巨大的成功.然而,商用LIBs含有高挥发性易燃有机电解液,使其存在严重的安全隐患.固态聚合物电解质具有解决相应安全性问题的潜力,有望成为下一代高安全性全固态LIBs的电解质材料.然而,固态聚合物电解质存在离子电导率不高等问题,限制了其在固态LIBs中的实际应用.研究者们为了提高该类电解质的离子电导率、锂离子迁移数等综合电化学性能,已在寻找新锂盐、对聚合物进行改性以及向聚合物电解质中添加填料等方面进行了较多的研究.本文简要概述了固态聚合物电解质的锂离子传导机理以及在提高固态聚合物电解质综合电化学性能方面的研究进展.  相似文献   

18.
Ion‐conducting block copolymers (BCPs) have attracted significant interest as conducting materials in solid‐state lithium batteries. BCP self‐assembly offers promise for designing ordered materials with nanoscale domains. Such nanostructures provide a facile method for introducing sufficient mechanical stability into polymer electrolyte membranes, while maintaining the ionic conductivity at levels similar to corresponding solvent‐free homopolymer electrolytes. This ability to simultaneously control conductivity and mechanical integrity provides opportunities for the fabrication of sturdy, yet easily processable, solid‐state lithium batteries. In this review, we first introduce several fundamental studies of ion conduction in homopolymers for the understanding of ion transport in the conducting domain of BCP systems. Then, we summarize recent experimental studies of BCP electrolytes with respect to the effects of salt‐doping and morphology on ionic conductivity. Finally, we present some remaining challenges for BCP electrolytes and highlight several important areas for future research. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1–16  相似文献   

19.
Wu  Hao  Han  Haoqin  Yan  Zhenhua  Zhao  Qing  Chen  Jun 《Journal of Solid State Electrochemistry》2022,26(9):1791-1808
Journal of Solid State Electrochemistry - Chloride solid-state electrolytes (SSEs) with wide electrochemical windows, high room-temperature ionic conductivity, and good stability towards air have...  相似文献   

20.
Novel composite, gel-type polymer electrolytes have been prepared by dispersing selected ceramic powders into a matrix formed by a lithium salt solution contained in a poly(acrylonitrile) (PAN) network. The electrochemical characterization demonstrates that these new types of composite gel electrolytes have high ionic conductivity, wide electrochemical stability and, particularly, high chemical integrity (no liquid leakage) even at temperatures above ambient. These unique properties make the composite gel membranes particularly suitable as electrolyte separators in lithium ion polymer batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号