首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Mesocarb metabolism in humans is the target of this investigation. A high-performance liquid chromatographic (LC) method with electrospray ionization (ESI)-ion trap mass spectrometric (MS) detection ion trap "SL" for the simultaneous determination of mesocarb and its metabolites in plasma and urine is developed and validated. Ten metabolites and the parent drug are detected in human urine, and only four in human plasma, after the administration of a single oral dose of 10 mg of mesocarb (Sydnocarb, two 5-mg tablets). Seven of this metabolites have been found for the first time. The confirmation of the results and identification of all the metabolites except amphetamine is performed by LC-MS, LC-MS-MS, and LC-MS3. In the case of doping analysis, the reliable detection time for mesocarb (long-life dihydroxymesocarb metabolites of mesocarb) is approximately 10-11 days after the administration of the drug, which is a significant increase over the existing data. The detection of amphetamine in plasma and urine is made using simple flow-injection analysis without a chromatographic separation. The addition-calibration method is used with plasma and urine. The mean recoveries from plasma are 49.2% and 57.4% for mesocarb concentrations of 33.0 and 66.0 ng/mL, respectively, whereas the recoveries from human urine are 76.9% and 81.4% for concentrations of 1 and 2 ng/mL, respectively. Calibration curves (using an internal standard method) are linear (r2>0.9969) for concentrations 0.6 to 67 ng/mL and from 0.05 to 5 ng/mL in plasma and urine, respectively. Both intra- and interassay precision of plasma control samples at 3, 40, and 55 ng/mL are lower than 6.2%, and the concentrations do not deviate for more than -3.4% to 7.3% from their nominal values. In urine, intra- and interassay precision of control samples at 0.08, 1.5, and 3.0 ng/mL is lower than 14.1%, with concentrations not deviating for more than -11.3% to 13.7% from their nominal values. The plasma disappearance curve of the parent drug is obtained. The major pharmacokinetic parameters are calculated.  相似文献   

2.
《Analytical letters》2012,45(5):734-744
A novel, sensitive, and robust method has been developed to detect 9 β2-agonists in porcine urine to monitor illegal use of β2-agonists in swine rearing. The method based on the molecular imprinted polymer (MIP) rapid extraction followed ultra-performance liquid chromatography coupled tandem mass spectrometry (UPLC-MS/MS) detection. The cleaning efficiency of MIP cartridges was demonstrated by comparing with common ion exchange solid phase extraction. The presented method was validated in accordance with the European Commission Decision 2002/657/EC. The linearity, decision limit (CCα), detection capability (CCβ), recovery, precision, robustness, and stability were studied in detail. CCα and CCβ values were from 0.006 ng/mL to 0.03 ng/mL and from 0.02 ng/mL to 0.08 ng/mL, respectively. The mean recoveries and repeatability varied from 68.8% to 94.2% and from 2.8% to 10.1%. The proposed method was applied to test 170 porcine urine samples from the Shaanxi province in China and two urine samples were confirmed as clenbuterol positive and the concentrations of clenbuterol in positive urine samples were about 0.08 ng/mL and 0.1 ng/mL, respectively. The developed method was demonstrated to be more sensitive and robust for the determination of 9 β2-agonists in porcine urine. The method was proven to be simple and easy in operation with high selectivity and good reproducibility.  相似文献   

3.
A capillary electrophoresis method, using field-amplified sample injection (FASI), was developed for separation and determination of some beta 2-agonists, such as cimaterol, clenbuterol and salbutamol. The optimum conditions for this system had been investigated in detail. The precision of the migration time, peak height and accuracy were determined in both intra-day (n = 5) and inter-day (n = 15) assays. Under the optimum conditions, the detection limits (defined as S/N = 3) of this method were found to be lower than 2.0 ng/mL for all of these three beta 2-agonists, which were much lower than that of the conventional electro-migration injection method, the enhancement factors were greatly improved to be 30-40-fold. Such lower detection limit lets this method to be suitable for determination of above-mentioned beta 2-agonists in the urine sample. The mean recoveries in urine were higher than 96.2%, 95.6% and 95.3% for cimaterol, clenbuterol and salbutamol, respectively, with relative standard deviations lower than 3.5%.  相似文献   

4.
A method to quantify metabolites of 17beta-nandrolone (17betaN) in boar and horse urine has been optimized and validated. Metabolites excreted in free form were extracted at pH 9.5 with tert-butylmethylether. The aqueous phases were applied to Sep Pak C18 cartridges and conjugated steroids were eluted with methanol. After evaporation to dryness, either enzymatic hydrolysis with beta-glucuronidase from Escherichia coli or solvolysis with a mixture of ethylacetate:methanol:concentrated sulphuric acid were applied to the extract. Deconjugated steroids were then extracted at alkaline pH with tert-butylmethylether. The dried organic extracts were derivatized with MSTFA:NH4I:2-mercaptoethanol to obtain the TMS derivatives, and were subjected to analysis by gas chromatography mass spectrometry (GC/MS). The procedure was validated in boar and horse urine for the following metabolites: norandrosterone, noretiocholanolone, norepiandrosterone, 5beta-estran-3alpha, 17beta-diol, 5alpha-estran-3beta, 17beta-diol, 5alpha-estran-3beta, 17alpha-diol, 17alpha-nandrolone, 17betaN, 5(10)-estrene-3alpha, 17alpha-diol, 17alpha-estradiol and 17beta-estradiol in the different metabolic fractions. Extraction recoveries were higher than 90% for all analytes in the free fraction, and better than 80% in the glucuronide and sulphate fractions, except for 17alpha-estradiol in the glucuronide fraction (74%), and 5alpha-estran-3beta, 17alpha-diol and 17betaN in the sulphate fraction (close to 70%). Limits of quantitation ranged from 0.05 to 2.1 ng mL(-1) in the free fraction, from 0.3 to 1.7 ng mL(-1) in the glucuronide fraction, and from 0.2 to 2.6 ng mL(-1) in the sulphate fraction. Intra- and inter-assay values for precision, measured as relative standard deviation, and accuracy, measured as relative standard error, were below 15% for most of the analytes and below 25%, for the rest of analytes. The method was applied to the analysis of urine samples collected after administration of 17betaN laureate to boars and horses, and its suitability for the quantitation of the metabolites in the three fractions has been demonstrated.  相似文献   

5.
A sensitive, precise and accurate quantitative liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the measurement of erythromycin A (EA) and related substances in commercial samples was developed and validated. The samples were chromatographed on a reversed-phase column with a polar endcapping and analyzed by ion trap tandem mass spectrometry in the multiple reaction monitoring (MRM) mode using positive electrospray ionization. The method showed high recovery (>or=98.82%), high sensitivity (lower limit of quantitation of 0.25 ng/mL for EA and less than 7.3 ng/mL for the related substances) and high precision (or=0.991) with a run time of only 13 min. The method was successfully applied to the determination of EA and related substances in commercial samples. Moreover, using the advanced data-dependent acquisition capability of the ion trap software two new unexpected EA related substances could be detected and possible structures for these substances were postulated.  相似文献   

6.
A previously described method for the screening of 18 diuretics and probenecid was substantially extended with 21 beta-blockers and 8 other diuretics allowing simultaneous determination of diuretics and beta-adrenergic blocking agents in human urine. Analysis was performed using an ion trap instrument with an electrospray ionisation (ESI) interface after liquid/liquid extraction with ethyl acetate. Full-scan MS and full-scan MS2 were applied in combination with scan-to-scan polarity switching. All compounds were separated in less than 22 min. The detection limits for the diuretics were between 5 and 100 ng/mL and for the beta-adrenergic blocking agents were between 5 and 500 ng/mL. The excretion of carvedilol was followed after intake of one tablet of Dimitone. Other doping agents including strychnine, norbuprenorphine and mesocarb hydroxysulfate could also be detected with this method.  相似文献   

7.
A reliable and easy to use liquid chromatography/tandem mass spectrometry (LC/MS/MS) method without the use of sample extraction was developed for the simultaneous quantification of urinary concentrations of mephenytoin, a standard phenotyping substrate for the cytochrome P450 enzyme CYP2C19, and its phase I metabolites 4'-hydroxymephenytoin and nirvanol. Fifty microL of urine were diluted with a buffered beta-glucuronidase solution and incubated at 37 degrees C for 6 h followed by addition of methanol, containing the internal standard 4'-methoxymephenytoin. The chromatographic separation was achieved using a 100 x 3 mm, 5 micro Thermo Electron Aquasil C18 column with a gradient flow, increasing the organic fraction (acetonitrile/methanol 50:50) of the mobile phase from 10 to 90%. Quantification by triple-stage mass spectrometry (TSQ Quantum, Thermo Electron) was accomplished by negative electrospray ionization in the selected reaction monitoring mode. Linearity was observed for all substances in the concentration range 15-10 000 ng/mL. The lower limit of quantification (LLOQ) was 20 ng/mL for 4'-hydroxymephenytoin and 30 ng/mL for nirvanol and mephenytoin, respectively. Intra- and inter-day inaccuracy did not exceed 9.5% for all substances from LLOQ to 10 000 ng/mL. Intra- and inter-day precision were in the range of 0.8-10.5%. The method was validated according to international ICH and FDA guidelines and successfully applied for phenotyping of Caucasian male volunteers who received an oral dose of 50 mg mephenytoin.  相似文献   

8.
A sensitive and rapid method based on liquid chromatography-triple-quadrupole tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) has been developed and validated for the screening and confirmation of 44 exogenous anabolic steroids (29 parent steroids and 15 metabolites) in human urine. The method involves an enzymatic hydrolysis, liquid-liquid extraction, and detection by LC-MS/MS. A triple-quadrupole mass spectrometer was operated in positive ESI mode with selected reaction monitoring (SRM) mode for the screening and product ion scan mode for the confirmation. The protonated molecular ions were used as precursor ions for the SRM analysis and product ion scan. The intraday and interday precisions of the target analytes at concentrations of the minimum required performance levels for the screening were 2-14% and 2-15%, respectively. The limits of detection for the screening and confirmation method were 0.1-10 ng/mL and 0.2-10 ng/mL, respectively, for 44 steroids. This method was successfully applied to analysis of urine samples from suspected anabolic steroid abusers.  相似文献   

9.
Electrospray ionization (ESI) mass spectra of 19 common beta(2)-agonists were investigated in terms of fragmentation pattern and dissociation behavior of the analytes, proving the origin of fragment ions and indicating mechanisms of charge-driven and charge-remote fragmentation. Based on these data, liquid chromatographic/ESI tandem mass spectrometric (LC/ESI-MS/MS) screening and confirmation methods were developed for doping control purposes. These procedures employ established sample preparation steps including either acidic or enzymatic hydrolysis, alkaline extraction and, in the case of equine urine specimens, acidic re-extraction of the analytes. In addition, a degradation product of formoterol caused by acidic hydrolysis during sample preparation could be identified and utilized as target compound in screening and also confirmation methods. The screening procedures cover 18 or 19beta(2)-agonists, the estimated limits of detection of which for equine and human urine samples vary between 2 and 100 ng ml(-1) and between 2 and 50 ng ml(-1), respectively. A single LC/MS/MS analysis can be performed in 9 min.  相似文献   

10.
A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated for the determination of donepezil in human plasma samples. Diphenhydramine was used as the internal standard. The collision-induced transition m/z 380 --> 91 was used to analyze donepezil in selected reaction monitoring mode. The signal intensity of the m/z 380 --> 91 transition was found to relate linearly with donepezil concentrations in plasma from 0.1-20.0 ng/mL. The lower limit of quantification of the LC/MS/MS method was 0.1 ng/mL. The intra- and inter-day precisions were below 10.2% and the accuracy was between -2.3% and +2.8%. The validated LC/MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 5 mg donepezil hydrochloride. The non-compartmental pharmacokinetic model was used to fit the donepezil plasma concentration-time curve. Maximum plasma concentration was 12.3 +/- 2.73 ng/mL which occurred at 3.50 +/- 1.61 h post-dosing. The apparent elimination half-life and the area under the curve were, respectively, 60.86 +/- 12.05 h and 609.3 +/- 122.2 ng . h/mL. LC/MS/MS is a rapid, sensitive and specific method for determining donepezil in human plasma samples.  相似文献   

11.
A fast liquid chromatographic/mass spectrometric (LC/MS/MS) screening method for the detection, in urine, of synthetic glucocorticoids, stimulants (formoterol, modafinil and mesocarb), anti-oestrogens (finasteride, exemestane, anastrozole, letrozole and formestane) and synthetic anabolic steroids (stanozolol, gestrinone and tetrahydrogestrinone) is described. All these drugs (and/or their urinary metabolites) can be simultaneously extracted by a single liquid/liquid extraction step, at alkaline pH, after enzymatic hydrolysis with beta-glucuronidase, and assayed in 7 min by LC/MS/MS using electrospray ionization in positive ion mode and multiple reaction monitoring as the acquisition mode. All compounds show good reproducibility of both the retention times (CV% <2%) and the relative abundances (CV% <10%). The limits of detection for the anti-oestrogens, glucocorticoids and steroids are in the range of 1-30 ng/mL, and for the stimulants are in the range of 100-200 ng/mL, thus satisfying the minimum required performance limits of the World Anti-Doping Agency.  相似文献   

12.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously determine mifepristone and monodemethyl-mifepristone in human plasma using levonorgestrel as the internal standard (IS). After solid-phase extraction of the plasma samples, mifepristone, monodemethyl-mifepristone and the IS were subjected to LC-MS/MS analysis using electro-spray ionization (ESI) in the multiple reaction monitoring (MRM) mode. Chromatographic separation was performed on an XTERRA MS C(18) column (150 x 2.1 mm i.d., 5 microm). The method had a chromatographic run time of 4.5 min and linear calibration curves over the concentration ranges of 5-2000 ng/mL for mifepristone and monodemethyl-mifepristone. The recoveries of the method were found to be 94.5-103.7% for mifepristone and 70.7-77.3% for monodemethyl-mifepristone. The method had a lower limit of quantification (LLOQ) of 5.0 ng/mL and a lower limit of detection (LOD) of 1.0 ng/mL for both mifepristone and monodemethyl-mifepristone. The intra- and inter-batch precision was less than 15% for all quality control samples at concentrations of 10, 100 and 1000 ng/mL. These results indicate that the method was efficient with a short run time (4.5 min) and acceptable accuracy, precision and sensitivity. The validated LC-MS/MS method was successfully used in a pharmacokinetic study in healthy female volunteers after oral administration of 25 mg mifepristone tablet.  相似文献   

13.
A UPLC/MS/MS method with simple protein precipitation has been validated for the fast simultaneous analysis of agomelatine, asenapine, amisulpride, iloperidone, zotepine, melperone, ziprasidone, vilazodone, aripiprazole and its metabolite dehydro‐aripiprazole in human serum. Alprenolol was applied as an internal standard. A BEH C18 (2.1 × 50 mm, 1.7 µm) column provided chromatographic separation of analytes using a binary mobile phase gradient (A, 2 mmol/L ammonium acetate, 0.1% formic acid in 5% acetonitrile, v/v/v; B, 2 mmol/L ammonium acetate, 0.1% formic acid in 95% acetonitrile, v/v/v). Mass spectrometric detection was performed in the positive electrospray ionization mode and ion suppression owing to matrix effects was evaluated. The validation criteria were determined: linearity, precision, accuracy, recovery, limit of detection, limit of quantification, reproducibility and matrix effect. The concentration range was as follows: 0.25–1000 ng/mL for agomelatine; 0.25–100 ng/mL for asenapine and iloperidone; 2.5–1000 ng/mL for amisulpride, aripiprazole, vilazodone and zotepine; 2.3–924.6 ng/mL for dehydroaripiprazole; 2.2–878.4 ng/mL for melperone; and 2.2–883.5 ng/mL for ziprasidone. Limits of quantitation below a therapeutic reference range were achieved for all analytes. Intra‐run precision of 0.4–5.5 %, inter‐run precision of 0.6–8.2% and overall recovery of 87.9–114.1% were obtained. The validated method was successfully implemented into routine practice for therapeutic drug monitoring in our hospital. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A fast and sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of lovastatin in human plasma. With simvastatin as internal standard, sample pretreatment involved one-step extraction with n-hexane-methylene dichloride-isopropanol (20:10:1, v/v/v) of 0.5 mL plasma. Chromatographic separation was carried out on an Acquity UPLC BEH C(18) column with mobile phase consisting of acetonitrile-water (containing 5 mmol/L ammonium acetate; 85:15, v/v) at a flow-rate of 0.35 mL/min. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) via electrospray ionization source with positive mode. The analysis time was shorter than 1.7 min per sample. The standard curve was linear (r2>or=0.99) over the concentration range 0.025-50.0 ng/mL with a lower limit of quantification of 0.025 ng/mL. The intra- and inter-day precision values were below 11% and the accuracy (relative error) was within 6.0% at three quality control levels. This is the first method of MS with MRM coupled to UPLC for the determination of lovastatin, which showed great advantages of high sensitivity, selectivity and high sample throughput. It was fully validated and successfully applied to the pharmacokinetic study of lovastatin tablets in healthy Chinese male volunteers after oral administration.  相似文献   

15.
A determination method has been optimized and validated for the simultaneous analysis of tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and doxycycline (DC) in honey. Tetracyclines (TCs) were removed from honey samples by chelation with metal ions bound to small Chelating Sepharose Fast Flow columns and eluted with Na2EDTA-Mcllvaine pH 4.0 buffers. Extracts were further cleaned up by Oasis HLB solid-phase extraction (SPE), while other solid-phase extraction cartridges were compared. Chromatographic separation was achieved using a polar end-capped C 18 column with an isocratic mobile phase consisting of oxalic acid, acetonitrile and methanol. LC with ultraviolet absorbance at 355 nm resulted in the quantitation of all four tetracycline residues from honey samples fortified at 15, 50, and 100 ng/g, with liner ranges for tetracyclines of 0.05 to 2 μg/mL. Mean recoveries for tetracyclines were greater than 50% with R.S.D. values less than 10% (n= 18). Detection limits of 5, 5, 10, 10 ng/g for oxytetracycline, tetracycline, chlortetracycline and doxycycline, respectively and quantitation limits of 15 ng/g for all the four tetracyclines were determined. Direct confirmation of the four residues in honey (2-50 ng/g) was realized by liquid chromatography-tandem mass spectrometry (LC/MS/MS). The linear ranges of tetracyclines determined by LC/MS/MS were between 5 to 300 ng/mL, with the linear correlation coefficient r〉 0.995. The limits of detection of 1 to 2 ng/g were obtained for the analysis of the TCs in honey.  相似文献   

16.
A rapid, novel and reliable UHPLC‐MS/MS method was developed and validated for simultaneous determination of cyclophosphamide (CP) and its dechloroethylated metabolite, 2‐dechloroethylcyclosphamide (2‐DCECP) in human plasma. The plasma samples were conducted by protein precipitation with 3‐fold acetonitrile, containing 0.1% formic acid. Mass spectrometric detection was performed using electrospray positive ionization with multiple reaction monitoring mode, using tinidazole as internal standard (IS). Chromatographic separation was performed on an Agilent poroshell 120 SB‐C18 column (2.1 × 75 mm, 2.7 µm) using gradient elution of acetonitrile and 0.1% formic acid at a flow rate of 0.5 mL/min, the total run time was 2.5 min. The limit of quantification (LOQ) was 20 ng/mL for both CP and 2‐DCECP. Accuracies and precisions were <15% at LOQ and below 10% at quality control concentration levels. This UHPLC‐MS/MS method was successfully applied for the estimation of CP and 2‐DCECP in human plasma, which was also useful for clinical toxicology studies and therapeutic drug monitoring of CP. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
An LC–MS/MS method was developed and validated for bioanalysis of clofazimine in human dried blood spot (DBS) samples in support of a clinical study on multidrug‐resistant tuberculosis in developing countries. The validated assay dynamic range was from 10.0 to 2000 ng/mL using a 1/8 inch DBS punch. The accuracy and precision of the assay were ±11.0% (bias) and ≤13.5% (CV) for the LLOQs (10.0 ng/mL) and ±15% (bias) and ≤15% (CV) for all other QC levels. The assay was proved to be free from the possible impact owing to spot size and storage temperature (e.g. at 60°C, ≤ − 60°C). The validated assay is well suited for the intended clinical study where conventional pharmacokinetic sample collection is not feasible.  相似文献   

18.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determination of bakkenolide D (BD), which was further applied to assess the pharmacokinetics of BD. In the LC‐MS/MS method, the multiple reaction monitoring mode was used and columbianadin was chosen as internal standard. The method was validated over the range of 1–800 ng/mL with a determination coefficient >0.999. The lower limit of quantification was 1 ng/mL in plasma. The intra‐ and inter‐day accuracies for BD were 91–113 and 100–104%, respectively, and the inter‐day precision was <15%. After a single oral dose of 10 mg/kg of BD, the mean peak plasma concentration of BD was 10.1 ± 9.8 ng/mL at 2 h. The area under the plasma concentration–time curve (AUC0–24 h) was 72.1 ± 8.59 h ng/mL, and the elimination half‐life (T1/2) was 11.8 ± 1.9 h. In case of intravenous administration of BD at a dosage of 1 mg/kg, the AUC0–24 h was 281 ± 98.4 h?ng/mL, and the T1/2 was 8.79 ± 0.63 h. Based on these results, the oral bioavailability of BD in rats at 10 mg/kg is 2.57%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A high-throughput and sensitive bioanalytical method using liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) has been developed for the estimation of sibutramine and its two metabolites (M1 and M2). The extraction of sibutramine, its metabolites and imipramine (internal standard (IS)) from the plasma involved treatment with phosphoric acid followed by solid-phase extraction (SPE) using a hydrophilic-lipophilic balanced HLB cartridge. The SPE eluate without drying and reconstitution was analyzed by LC/MS/MS, equipped with a with turbo ion spray (TIS) source, operating in the positive and multiple reaction monitoring (MRM) acquisition mode. Sample preparation by this method yielded extremely clean extracts with quantitative and consistent mean recoveries; 95.12% for sibutramine, 92.74% for M1, 95.97% for M2 and 96.60% for the IS. The total chromatographic run time was 3.0 min with retention times of 2.51, 2.13, 2.09 min for sibutramine, M1, M2 and imipramine, respectively. The developed method was validated in human plasma matrix, with a sensitivity of 0.1 ng/mL (coefficient of variance (CV), 2.07%) for sibutramine, 0.1 ng/mL (CV, 3.59%) for M1 and 0.2 ng/mL (CV, 4.93%) for M2. Validation of the method for its accuracy, precision, recovery, matrix effect and stability was carried out especially with regard to real subject sample analysis. The response was linear over the dynamic range 0.1 to 8.0 ng/mL for sibutramine and M1, and 0.2 to 16.0 ng/mL for M2 with correlation coefficients of r > or = 0.9959 (sibutramine), 0.9935 (M1) and 0.9943 (M2). The method was successfully applied for bioequivalence studies in 40 human subjects with 15 mg capsule formulations.  相似文献   

20.
A sensitive LC/MS/MS assay for determining zidovudine (ZDV) and lamivudine (3TC) in human plasma was validated to support antiretroviral pharmacology research programs. After addition of stable labeled isotopic zidovudine (ZDV‐IS) and lamivudine (3TC‐IS) as internal standard, a solid‐phase extraction was performed with an Oasis HLB 1 cm3 cartridge, with recoveries of 92.3% for ZDV and 93.9% for 3TC. A Phenomonex Synergi Hydro‐RP (2.0 × 150 mm) reversed‐phase analytical column was utilized for chromatographic separation. The mobile phase consisted of an aqueous solution of 15% acetonitrile and 0.1% acetic acid. Detection was accomplished by ESI/MS/MS in the positive ion mode, monitoring 268/127, 271/130, 230/112 and 233/115 transitions, for ZDV, ZDV‐IS, 3TC and 3TC‐IS, respectively. The method was linear from 1 to 3000 ng/mL with a minimum quantifiable limit of 1 ng/mL when 100 μL of plasma was analyzed. Validation results demonstrated high accuracy (≤8.3% deviation) and high precision (≤10% CV) for the quality control samples. The method was also shown to be specific and reproducible. The value of the high sensitivity was demonstrated by quantitation of approximately 100 existing samples that had ZDV below the limit of quantitation using a previously validated, less sensitive HPLC‐UV method utilized in the laboratory. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号