首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The positive ion electrospray mass spectra of [M+H](+) and the negative ion electrospray mass spectra of [M-H](-) ions of selected pyroglutamate containing peptides both provide sequencing data. The negative ion spectra show the normal alpha and beta backbone cleavages in addition to delta and gamma backbone cleavages initiated by the side chains of Glu and Phe residues. For example, the [M-H](-) ion of pGlu Pro Gln Val Phe Val-NH(2) shows delta and gamma peaks at m/z 224 (delta, Gln3), 244 (gamma, Phe4), 451 (delta, Phe4), 471 (gamma, Gln3). Some of the negative ion spectra show unusual grandaughter peaks that originate by alpha and beta, or delta and gamma backbone cleavages of a beta(1) cleavage ion.  相似文献   

2.
The collision-induced spectra of [M - H](-) ions of a variety of natural and synthetic amphibian peptides containing Asp and/or Glu exhibit characteristic gamma backbone cleavage ions that identify the positions of these residues in the peptide. A theoretical study suggests that the Glu cleavage involves an S(N)i reaction of the carboxylate anion from the Glu alpha side chain to form a deprotonated cyclic lactone. The presence of either Asp or Glu or other residues that effect pronounced side-chain cleavages (e.g. Ser or Thr) results in the normal alpha and beta backbone cleavages being reduced in comparison to those cleavages which originate from side chains.  相似文献   

3.
Collision-induced fragmentations of deprotonated maculatin 1 peptides provide significant sequencing information. When the peptide lacks those residues which can fragment through their alpha side chains (e.g. Thr, Ser, Glu and Gln in this study) the basic alpha and beta' backbone cleavages occur from the [Mbond;H](-) anion. When Thr, Ser, Glu and Gln are present, the ease of side-chain fragmentation of these residues is: Thr (loss of MeCHO) > Ser (CH(2)O) > Glu (H(2)O) > Gln (NH(3)). When one of more of these residues is (are) present, the alpha and beta' cleavages often occur from a fragment rather than the [Mbond;H](-) anion, e.g. for Thr, the [(Mbond;H)(-)bond;MeCHO](-) anion. These four residues also initiate gamma backbone cleavage reactions. The relative abundances of peaks resulting from gamma cleavage are Glu > Ser = Thr > Gln for maculatin 1 spectra. An unusual Gln19/Ile17 cyclisation/cleavage reaction occurs in maculatin spectra: the peptide [Mbond;H](-) anion must adopt a helical conformation in order for these two groups to interact. Analogous fragmentations have been reported previously in the negative ion spectra of the caerin 1 peptides.  相似文献   

4.
This paper reports the study of backbone cleavages in the collision-induced negative-ion mass spectra of the [M - H](-) anions of some synthetic modifications of the bioactive amphibian peptide citropin 1 (GLFDVIKKVASVIGGL-NH(2)). The peptides chosen for study contain no amino acid residues which could effect facile side-chain cleavage, i.e. Ser (-CH(2)O, side-chain cleavage) and Asp (-H(2)O) are replaced by Ala or Lys. We expected that such peptides should exhibit standard and pronounced peaks due to alpha cleavage ions (and to a lesser extent beta cleavage ions) in their collision-induced negative-ion spectra. This expectation was realised, but the spectra also contained peaks formed by a new series of cleavage anions. These are produced following cyclisation of the C-terminal CONH(-) moiety at carbonyl functions of amide groups along the peptide backbone; effectively transferring the NH of the C-terminal CONH(-) group to other amino acid residues. We have called the product anions of these processes beta' ions, in order to distinguish them from standard beta ions. Some beta' ions also fragment directly to some other beta' ions of smaller mass. The reaction coordinates of alpha,beta and beta' backbone processes have been calculated at the HF/6-31G*//AM1 level theory for simple model systems. The initial cyclisation step of the beta' sequence is barrierless and exothermic. Subsequent steps have a maximum barrier of +40 kcal mol(-1), with the overall reaction being endothermic by some 30 kcal mol(-1) at the level of theory used. These calculations take no account of the complexity of the conformationally flexible peptide system, and it is surprising that each of the two reacting centres can 'find' each other in such a large system.  相似文献   

5.
Amino acid residue-specific backbone and side-chain dissociations of peptide z ions in MS(3) spectra were elucidated for over 40 pentapeptides with arginine C-terminated sequences of the AAXAR and AAHXR type, nonapeptides of the AAHAAXX"AR and AAHAXAX"AR type, and AAHAAXX"AAR decapeptides. Peptide z(n) ions containing amino acid residues with readily transferrable benzylic or tertiary β-hydrogen atoms (Phe, Tyr, His, Trp, Val) underwent facile backbone cleavages to form dominant z(n-2) or z(n-3) ions. These backbone cleavages are thought to be triggered by a side-chain β-hydrogen atom transfer to the z ion C(α) radical site followed by homolytic dissociation of the adjacent C(α)-CO bond, forming x(n-2) cation-radicals that spontaneously dissociate by loss of HNCO. Amino acid residues that do not have readily transferrable β-hydrogen atoms (Gly, Ala) do not undergo the z(n) → z(n-2) dissociations. The backbone cleavages compete with side-chain dissociations in z ions containing Asp and Asn residues. Side-chain dissociations are thought to be triggered by α-hydrogen atom transfers that activate the C(β)-C(γ) or C(β)-heteroatom bonds for dissociations that dominate the MS(3) spectra of z ions from peptides containing Leu, Cys, Lys, Met, Ser, Arg, Glu, and Gln residues. The Lys, Arg, Gln, and Glu residues also participate in γ-hydrogen atom transfers that trigger other side-chain dissociations.  相似文献   

6.
The off-line coupling of high-performance anion-exchange chromatography to electrospray ion trap mass spectrometry (ESI-IT-MS) is described. Two sets of isocratic conditions were optimised for the semi-preparative purification of oligogalacturonates of degree of polymerisation from 4 to 6 by monitoring eluates with either pulsed amperometric detection or evaporative light scattering detection in the presence of an online Dionex Carbohydrate Membrane Desalter (CMD). In these conditions, purified oligogalacturonate solutions were suitable, without further desalting steps, for infusion ESI-IT-MS experiments. This paper provides some interesting features of positive and negative ESI-IT-multiple MS (MSn) of these acidic oligosaccharides. The spectra acquired in both ion modes show characteristic fragments resulting from glycosidic bond and cross-ring cleavages. Under negative ionization conditions, the fragmentation of the singly-charged [M-H]- ions, as well as the Ci-, and Zi-, fragment ions through sequential MSn experiments, was always dominated by product ions from C- and Z-type glycosidic cleavages. All spectra also displayed 0.2 A-type cross-ring cleavage ions which carry linkage information. Collision-induced dissociation (CID) spectra of sodium-cationized species obtained under positive ionization conditions were more complex. Successive MSn experiments also led to the 0.2 A-type cross-ring cleavage ions observed together with B- and Y-type ions. The presence of the 0.2 A ion series was related to Mr 60 (C2H4O2) losses. Combined with the absence of the Mr 30 (CH2O) and the Mr 90 (C3H6O3) ions, these ions were indicative of 1-4 type glycosidic linkage.  相似文献   

7.
We examined the fragmentation of the electrospray-produced [M-H]- and [M-2H]2- ions of a number of peptides containing two acidic amino acid residues, one being aspartic acid (Asp) or glutamic acid (Glu), and the other being cysteine sulfinic acid [C(SO2H)] or cysteine sulfonic acid [C(SO3H)], on an ion-trap mass spectrometer. We observed facile neutral losses of H2S and H2SO2 from the side chains of cysteine and C(SO2H), respectively, whereas the corresponding elimination of H2SO3 from the side chain of C(SO3H) was undetectable for most peptides that we investigated. In addition, the collisional activation of the [M-H]- ions of the C(SO2H)-containing peptides resulted in the cleavage of the amide bond on the C-terminal side of the C(SO2H) residue. Moreover, collisional activation of the [M-2H]2- ions of the above Asp-containing peptides led to the cleavage of the backbone N-Calpha bond of the Asp residue to give cn and/or its complementary [zn-H2O] ions. Similar cleavage also occurred for the singly deprotonated ions of the otherwise identical peptides with a C-terminal amide functionality, but not for the [M-H]- ions of same peptides with a free C-terminal carboxylic acid. Furthermore, ab initio calculation results for model cleavage reactions are consistent with the selective cleavage of the backbone N-Calpha bond in the Asp residue.  相似文献   

8.
The collision induced spectra of [M - H](-) anions from of caerin 1 peptides and some synthetic modifications show the usual alpha, beta and beta' backbone cleavages together with Ser (epsilon,gamma) and Glu (gamma) cleavages which break the peptide backbone in the vicinity of those residues. All of these cleavages require the peptide backbone to be flexible. There is also a backbone cleavage of a type not observed before. This cleavage involves nucleophilic attack of the carboxylate anion of the Glu23 side chain at the backbone CH of Ile 21. We propose that this cleavage requires the caerin peptide to be in an alpha helical conformation (the 3D structure that this peptide adopts in solution) in order that the interacting groups are held in close proximity.  相似文献   

9.
The Cys residue initiates characteristic backbone cleavages of [M-H](-) anions of Cys-containing peptides. A combination of experiment and theory suggests that these processes are initiated by molecular recognition between the C-terminal CONH(-) group (in this study all peptides have C-terminal CONH(2) groups) and the SH in the Cys side chain to form an S-H...O=C hydrogen bond. This process is exothermic by 60 kJ mol(-1) (calculations at the HF/6-31G(d)//AM1 level of theory). The structure of this reactive intermediate has the NH(-) of the amide group and the central CH of the Cys residue locked into position such that these groups effect an S(N)2 process to form an intermediate which can either (i) dissociate to give an RNH(-) species [the delta ion (process endothermic by 37 kJ mol(-1) with a barrier of 132 kJ mol(-1))], or (ii) effect deprotonation within the intermediate to eliminate RNH(2) to give the gamma backbone cleavage anion in a reaction exothermic by 40 kJ mol(-1) with a barrier of 132 kJ mol(-1). Collision-induced mass spectra of the [M-H](-) anions of five selected Cys-containing peptides all contain gamma and (gamma-H(2)S) anions. Three of these spectra also show the less favoured delta cleavage anions.  相似文献   

10.
Partially acetylated and methylated oligogalacturonides produced by enzymatic hydrolysis of sugar beet pectin were analysed by negative electrospray ionization ion trap mass spectrometry (ESI-ITMS). The (18)O labelling of the oligomer reducing end allowed the precise assignment of the fragments resulting from glycosidic bond and cross-ring cleavages. The collisional-induced dissociation of the C(i) and Z(j) fragment ions through sequential MS(n) experiments always displayed (0, 2)A-type cross-ring cleavage ions which were related to C(2)H(4)O(2) losses. These (0, 2)A ions appeared to be highly diagnostic ions allowing the precise location of the acetyl groups to the O-2 and/or O-3 of the acetylated galacturonic acid residues.  相似文献   

11.
Fagerquist CK  Sultan O 《The Analyst》2011,136(8):1739-1746
The disulfide-intact and disulfide-reduced β-subunit of Shiga toxin 2 (β-Stx2) from Escherichia coli O157:H7 (strain EDL933) has been identified by matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomic analysis using software developed in-house. E. coli O157:H7 was induced to express Stx2 by culturing on solid agar media supplemented with 10-50 ng mL(-1) of ciprofloxacin (CP). Bacterial cell lysates at each CP concentration were analyzed by MALDI-TOF-MS. A prominent ion at mass-to-charge (m/z) ~7820 was observed for the CP concentration range: 10-50 ng mL(-1), reaching a maximum signal intensity at 20 ng mL(-1). Complex MS/MS data were obtained of the ion at m/z ~7820 by post-source decay resulting in top-down proteomic identification as the mature, signal peptide-removed, disulfide-intact β-Stx2. Eight fragment ion triplets (each spaced Δm/z ~33 apart) were also observed resulting from backbone cleavage between the two cysteine residues (that form the intra-molecular disulfide bond) and symmetric and asymmetric cleavage of the disulfide bond. The middle fragment ion of each triplet, from symmetric disulfide bond cleavage, was matched to an in silico fragment ion formed from cleavage of the backbone at a site adjacent to an aspartic acid or glutamic acid residue. The flanking fragment ions of each triplet, from asymmetric disulfide bond cleavage, were not matched because their corresponding in silico fragment ions are not represented in the database. Easier to interpret MS/MS data were obtained for the disulfide-reduced β-Stx2 which resulted in an improved top-down identification.  相似文献   

12.
Oligosaccharides were derivatized by reductive amination using 2-aminobenzamide (2-AB) and analyzed by matrix-assisted laser desorption/ionization two-stage time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry (MS/MS) in the positive ion mode. The major signals were obtained under these conditions from the [M+Na]+ ions for all 2-AB-derivatized oligosaccharides. A systematic study was conducted on a series of 2-AB-derivatized oligosaccharides to allow rationalization of the fragmentation processes. The MALDI-TOF/TOF-MS/MS spectra of the [M+Na]+ ions of 2-AB-derivatized oligosaccharides were dominated by glycosidic cleavages. These fragments originating both from the reducing and the non-reducing ends of the oligosaccharide yield information on sequence and branching. Moreover, the MALDI-TOF/TOF-MS/MS spectra were also characterized by abundant cross-ring fragments which are very informative on the linkages of the monosaccharide residues constituting these oligosaccharides. MALDI-TOF/TOF-MS/MS analysis of 2-AB-derivatized oligosaccharides, by providing structural information at the low-picomole level, appears to be a powerful tool for carbohydrate structural analysis.  相似文献   

13.
Capillary electrophoresis-electrospray tandem mass spectrometry (CE-MS/MS) has been used to identify degradation products of the aspartyl tripeptides Phe-Asp-GlyNH(2) and Gly-Asp-PheNH(2) following incubation of the peptides in acidic and alkaline solution. At pH 2, the dominant decomposition products resulted from cleavage of the peptide backbone amide bonds to yield the respective dipeptides and amino acids. In addition, the cyclic aspartyl succinimide intermediate was identified by its [M+H](+) at m/z = 319 and the MS/MS spectrum exhibiting a simple fragmentation pattern with the [C(8)H(10)N](+)-ion as the principal daughter ion (a(1) of Phe-Asp-GlyNH(2)). Deamidation of the C-terminal amide as well as isomerization and enantiomerization of the Asp residue occurred upon incubation at pH 10. alpha-Asp and the isomeric beta-Asp and most of the diastereomeric forms (corresponding to D/L-Asp) could be separated by CE. All isomers could be identified based on their MS/MS spectra. Peptides with the amino acid sequence Phe-Asp-Gly containing the regular alpha-Asp bond displayed a highly intense b(2) fragment ion and a low abundant y(2) ion. In contrast, the y(2) and a(1) fragment were high abundant daughter ions in the mass spectra of beta-Asp peptides while the b(2) ion exhibited a lower abundance. Differences in the MS/MS spectra of the isomers of the peptides with the sequence Gly-Asp-Phe were obvious but less pronounced. In conclusion, CE-MS/MS proved to be a useful tool to study the decomposition and enantiomerization of peptides including the isomerization of Asp residues, due to the combination of efficient separation of isomers by CE and their identification by MS/MS.  相似文献   

14.
Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z′-ions originating from cleavage at the N–Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z′-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a “mobile proton” are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.
Figure
?  相似文献   

15.
The characteristics shown in the electrospray ionization/ion trap mass spectra of ring-opened LI-F antibiotics (cyclic depsihexapeptides with a 15-guanidino-3-hydroxypentadecanoic group as a side-chain) were examined. Collision-induced dissociation (CID) MS of protonated molecules of the depsipeptides produced many fragment ions. Most of these fragment ions contained information for determining the amino acid sequences of antifungal antibiotics. The fragment ions were classified into six groups (b(n'), B(n'), B'(n'), beta(n'), y(n) and Y(n)). According to MS(3) spectra, the B(n'), B'(n) and beta(n) ions can be considered to be derived with a cleavage at each CO--NH in the peptide bonds of [MH--NH(3)](+),[MH--NH(3)--OH](+) and [MH--NH(3)--2H(2)O](+), respectively, in ion trap MS. Losses of NH(3) and H(2)O from the amino acid residues of the depsipeptides in ion trap MS are likely to be smaller than those from the side-chain. The measurements with electrospray ionization (ESI)/ion trap MS of depsipeptides with a side chain containing polar groups may provide useful information for structural determination.  相似文献   

16.
The dissociation behavior of phosphorylated and sulfonated peptide anions was explored using metastable atom-activated dissociation mass spectrometry (MAD-MS) and collision-induced dissociation (CID). A beam of high kinetic energy helium (He) metastable atoms was exposed to isolated phosphorylated and sulfonated peptides in the 3– and 2– charge states. Unlike CID, where phosphate losses are dominant, the major dissociation channels observed using MAD were Cα – C peptide backbone cleavages and neutral losses of CO2, H2O, and [CO2 + H2O] from the charge reduced (oxidized) product ion, consistent with an electron detachment dissociation (EDD) mechanism such as Penning ionization. Regardless of charge state or modification, MAD provides ample backbone cleavages with little modification loss, which allows for unambiguous PTM site determination. The relative abundance of certain fragment ions in MAD is also demonstrated to be somewhat sensitive to the number and location of deprotonation sites, with backbone cleavage somewhat favored adjacent to deprotonated sites like aspartic acid residues. MAD provides a complementary dissociation technique to CID, ECD, ETD, and EDD for peptide sequencing and modification identification. MAD offers the unique ability to analyze highly acidic peptides that contain few to no basic amino acids in either negative or positive ion mode.  相似文献   

17.
Here we describe a technique to obtain all the N-linked oligosaccharide structures from a single reversed-phase (RP) HPLC run using on-line tandem MS in both positive and negative ion modes with polarity switching. Oligosaccharides labeled with 2-aminobenzamide (2AB) were used because they generated good ionization efficiency in both ion polarities. In the positive ion mode, protonated oligosaccharide ions lose sugar residues sequentially from the nonreducing end with each round of MS fragmentation, revealing the oligosaccharide sequence from greatly simplified tandem MS spectra. In the negative ion mode, diagnostic ions, including those from cross-ring cleavages, are readily observed in the MS2 spectra of deprotonated oligosaccharide ions, providing detailed structural information, such as branch composition and linkage positions. Both positive and negative ion modes can be programmed into the same LC/MS experiment through polarity switching of the MS instrument. The gas-phase oligosaccharide nonreducing end (GONE) sequencing data, in combination with the diagnostic ions generated in negative ion tandem MS, allow both sequence and structural information to be obtained for all eluting species during a single RP-HPLC chromatographic run. This technique generates oligosaccharide analyses at high speed and sensitivity, and reveals structural features that can be difficult to obtain by traditional methods.  相似文献   

18.
High-energy tandem mass spectrometry and molecular dynamics calculations are used to determine the locations of charge in metastably decomposing (M + 2H)2+ ions of human angiotensin II. Charge-separation reactions provide critical information regarding charge sites in multiple charged ions. The most probable kinetic energy released (Tm.p.) from these decompositions are obtained using kinetic energy release distributions (KERDs) in conjunction with MS/MS (MS2), MS/MS/MS (MS3), and MS/MS/MS/MS (MS4) experiments. The most abundant singly and doubly charged product ions arise from precursor ion structures in which one proton is located on the arginine (Arg) side chain and the other proton is located on a distal peptide backbone carbonyl oxygen. The MS3 KERD experiments show unequivocally that neither the N-terminal amine nor the aspartic acid (Asp) side chain are sites of protonation. In the gas phase, protonation of the less basic peptide backbone instead of the more proximal and basic histidine (His) side chain is favored as a result of reduced coulomb repulsion between the two charge sites. The singly and doubly charged product ions of lesser abundance arise from precursor ion structures in which one proton is located on the Arg side chain and the other on the His side chain. This is demonstrated in the MS3 and MS4 mass-analyzed ion kinetic energy spectrometry experiments. Interestingly, (b7" + OH)2+ product ions, like the (M + 2H)2+ ions of angiotensin II, are observed to have at least two different decomposing structures in which charge sites have a primary and secondary location.  相似文献   

19.
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds.  相似文献   

20.
Protein identification and peptide sequencing by tandem mass spectrometry requires knowledge of how peptides fragment in the gas phase, specifically which bonds are broken and where the charge(s) resides in the products. For many peptides, cleavage at the amide bonds dominate, producing a series of ions that are designated b and y. For other peptides, enhanced cleavage occurs at just one or two amino acid residues. Surface-induced dissociation, along with gas-phase collision-induced dissociation performed under a variety of conditions, has been used to refine the general 'mobile proton' model and to determine how and why enhanced cleavages occur at aspartic acid residues and protonated histidine residues. Enhanced cleavage at acidic residues occurs when the charge is unavailable to the peptide backbone or the acidic side-chain. The acidic H of the side-chain then serves to initiate cleavage at the amide bond immediately C-terminal to Asp (or Glu), producing an anhydride. In contrast, enhanced cleavage occurs at His when the His side-chain is protonated, turning His into a weak acid that can initiate backbone cleavage by transferring a proton to the backbone. This allows the nucleophilic nitrogen of the His side-chain to attack and form a cyclic structure that is different from the 'typical' backbone cleavage structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号