首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
随机相位微波功率的空间合成效率   总被引:2,自引:1,他引:1       下载免费PDF全文
 采用数值计算方法,将微波功率源输出信号的相位差视为等概率分布的随机事件,通过阵列天线平均增益定量计算了多微波源空间功率合成效率;分析了随机相位条件下,天线单元间耦合系数、极化方式和单元增益对合成效率的影响。计算结果表明:多微波源在随机相位条件下进行空间功率合成,阵列天线单元之间的相互耦合将造成合成效率严重下降;而天线类型、极化方式和天线单元增益对合成效率的影响较小。  相似文献   

2.
针对多台高功率微波源组阵进行功率合成时相位离散分布的问题,基于数理统计方法对合成阵元相位误差呈正态分布情况下阵列合成效率进行了理论分析,提出了相位误差有界分布下其概率密度函数的表达式,修正了相位分布标准差较大时微波功率合成效率的理论计算公式。为验证修正后的理论公式正确性,使用数值模拟方法计算了合成阵列天线阵元激励信号相位误差呈正态分布下的空间功率合成效率,计算结果表明,数值模拟结果与理论分析给出的计算结果吻合得较好,修正后空间功率合成效率公式的预估精度得到有效提高。  相似文献   

3.
阵列馈源偏置抛物面天线合成高功率微波的研究   总被引:3,自引:3,他引:0       下载免费PDF全文
 运用物理光学分析方法,对使用7单元的扇形喇叭一维阵列和角锥喇叭或圆锥喇叭三角形阵列喇叭束作为单偏置抛物面天线的馈源,空间合成高功率微波进行了比较研究,数值分析表明在阵元输入功率、口面最大场强、天线口径、净空间及天线边缘照度相同,且阵列馈源具有准轴对称主瓣条件下,扇形喇叭构成的一维阵列馈源与单偏置抛物面组成的天线系统的方向性系数和溢出效率优于采用角锥喇叭三角形阵列馈源或圆锥喇叭三角形阵列馈源的天线系统。若将喇叭束直接作为辐射天线使用,由于圆锥喇叭三角形阵列方向性系数对阵元间相位波动的稳定性较好,而更具优势。  相似文献   

4.
对基于矩形阵列的高功率微波二维密集阵阵列合成进行了研究。仿真分析了均匀矩形栅格阵列的远场方向图,结果表明采用密集阵可以实现高效的、具有确定主波束的空间功率合成。并分析了阵元间距及阵元初相位对阵列空间功率合成的影响,结果表明:阵元间距越小,栅瓣越少,主波束宽度越宽,具有确定主波束的临界距离越小;当目标高度超过阵临界距离时,阵元初相位相差越小合成效率越高,阵列初相位分布范围超过/2时,阵列得不到确定的主波束,进行阵列设计时应充分考虑阵元间距及初相位对阵列合成的影响。  相似文献   

5.
陈秋菊  姜秋喜  曾芳玲  宋长宝 《物理学报》2015,64(20):204101-204101
基于时间反演技术, 建立了稀疏阵列单频信号相干合成的数学模型, 定义了合成效率函数概念, 推导出合成信号幅度最大时刻目标点合成效率值的统计特征与相位误差及阵元数的关系表达式, 并通过理论分析与仿真计算研究了相位误差对时间反演单频信号合成效果的影响. 分析表明, 当其他参数确定时, 假设相位误差服从一定范围的均匀分布, 且相互独立, 则峰值功率时刻的合成效率均值与阵元数无关, 仅与误差分布范围有关; 峰值功率时刻的合成效率方差与两者均相关, 且误差分布范围确定时, 阵元数越大, 峰值功率时刻的合成效率方差越小. 仿真计算结果表明, 即使存在一定的相位误差, 利用时间反演技术, 仍可实现单频信号在目标点邻域的相干合成及能量聚焦; 对相位误差的控制精度应结合需求与实现条件折中考虑. 本文的方法与结论可为研究稀疏阵列功率合成在高功率微波武器等技术中的应用提供理论依据.  相似文献   

6.
采用数理统计方法分析了任意分布的随机相位误差对多台不等功率辐射源组成的天线阵空间功率合成效率的影响,得到了由多台不等幅馈电的阵元组成的天线阵空间功率合成效率期望值的解析表达式。通过该解析式可利用快速傅里叶变换(FFT)快速分析任意数目阵元组成的天线阵在目标点的期望合成效率,为空间功率合成系统的总体合成效率预估并合理分解各分系统随机相位抖动指标提供了一种高效的解析分析方法。作为算例,用得到的解析公式分析相位误差分布呈均匀分布、正态分布和三角形分布三种典型情况对合成效率的影响。  相似文献   

7.
以失配角为例,与相同尺寸的单点探测器比较,理论结合数值计算分析了空间相位畸变对非成像阵列探测器的影响。结果表明,阵列中各单元信号的附加相位将严重影响这种探测方式的性能。因此,就空间相位畸变而言,简单的线性叠加方式不足以克服其影响。根据分析结果指出,若能通过一定方法消除阵列中各单元输出信号的附加相位,即使在空间畸变很严重的情况下,非成像阵列探测器仍然可以大幅提高系统的信噪比。丰富了非成像阵列探测器在外差探测领域的研究,对其应用具有一定的指导意义。  相似文献   

8.
推导出有初始相位分布的径向洛伦兹阵列光束在自由空间传输的解析公式,用以研究相干合成光束在自由空间的传输特性。结果表明:在远场,具有不同相位分布的光束光强剖面成为空心形状,具有相同相位分布的光束光强剖面中心为亮斑。合成光束束宽和桶中功率与子光束束腰宽度、径向阵列的初始相位分布和半径有关。对所得结果用数值计算例做了说明。当阵列半径较大和束腰宽度较小时,具有不同相位分布和相同相位的光束束宽随传输距离的变化曲线和桶中功率都趋于一致。  相似文献   

9.
高斯光束的合成特性分析   总被引:6,自引:2,他引:4       下载免费PDF全文
 建立了矩形阵列高斯光束合成模型,采用数值模拟方法计算了光束间距、单元光束特性以及阵列结构等参数对非相干合成和同相位相干合成的远场峰值强度及光束质量的影响,描述了非同相位相干合成可能产生的结果,讨论了同轴与非同轴合成,相干与非相干合成的特点。结果表明:非相干和同相位相干合成时的光束质量随着单元光束的增多而变差,并且随着光束间距与单元光束束腰之比的增大而下降;而非同相位相干合成的结果较为复杂,可能产生完全相消干涉,合成光束“重心”离轴及束腰位置偏移等现象。分析认为:同轴合成可以获得最佳的光束质量,是值得采用的合成方式。此外,同轴相干合成优于非相干合成的充分条件是将单元光束之间的相位差控制在(-π/4,π/4)以内。  相似文献   

10.
基于高频天线产生低频电磁波信号,实现多波段信号对目标的照射,不仅有可能减小低频天线尺寸,而且可能成为提高雷达目标探测性能的一种途径.本文将多普勒效应与阵列天线结构相结合,基于对阵列中各辐射单元的信号时序、相位和间距等参数的控制,提出了一种在目标区产生低频信号的方法.本文给出了阵列参数的选择原则,介绍了目标位于阵列方向和45°角扫描时的低频信号合成情况,对存在辐射单元间距误差、相位误差、目标偏离预定位置以及等间隔稀疏条件下的合成信号性能进行了分析,并采用峰值旁瓣比和积分旁瓣比来评价合成信号的性能.将频率1 GHz载波信号合成为频率400 MHz信号的仿真分析结果,表明了本文方法的有效性.  相似文献   

11.
高功率单层径向线螺旋阵列天线的设计与模拟   总被引:1,自引:9,他引:1       下载免费PDF全文
 在研究磁探针耦合特性的基础上,设计了中心频率为4.0 GHz的3圈36单元高功率单层径向线螺旋阵列天线,各圈距中心位置分别为45,90,135 mm,单元个数分别为6,12,18。该天线采用磁探针代替电探针给短螺旋单元天线馈电,通过同轴-径向线模式转换器实现径向线TEM外行波激励,采用调整磁探针的探入深度和绕轴旋转短螺旋单元天线的方法改变单元的激励幅度与激励相位。数值模拟结果表明:该口径为324 mm的天线在中心频率上可获得21.58 dB的增益,口径效率可达78.2%,轴向轴比值为1.73;在3.8~4.2 GHz的频率范围内增益大于20.85 dB,口径效率大于73.2%,轴向轴比值小于2.0,反射系数小于0.27,辐射效率大于93%。  相似文献   

12.
彭博  张波 《应用声学》2016,24(7):227-229
数字波束形成(DBF)阵列能够充分利用阵列天线所获取的空间信息,通过信号处理技术使波束获得超分辨率和低旁瓣的性能,它由天线阵元、射频下变频模块、AD采样、中频接收系统及上位机控制器组成。对中频接收系统进行数字波束形成的具体方案进行讨论,对多路接收和AD量化一致性造成的各通道间失配提出了幅相校正的解决方案,详细分析了研制中的关键技术。实验结果表明所设计的DBF多波束中频接收系统可有效实现通道间失配的校正,并实现精确的波束赋形功能。  相似文献   

13.
窦任生  林海  胡继承 《光学学报》2005,25(7):59-964
研究了计算机程控光学器件的性能。通过对液晶空间光调制器进行电寻址控制,得到了振幅模式、二进制相位模式和连续相位模式的计算机程控透镜和程控微透镜阵列。实验结果和计算分析都表明,连续相位模式的程控透镜具有较好的聚焦性能和光效率。程控微透镜阵列的优点是阵列中的每一个微透镜都可以单独控制,可以得到所需要的阵列形式。实验给出了一个由这样的微透镜阵列产生的去掉了中心4×4阵列的8×8光斑阵列样式。还给出了利用程控透镜来方便有效地演示和研究透镜的像差方法。由计算机控制空间光调制器得到的光学器件虽然具有极大的灵活性,但是由于空间光调制器的像素的尺寸影响了它的精细程度,限制了它的应用。  相似文献   

14.
钟选明  张东民  廖成  杜振  熊洁 《强激光与粒子束》2020,32(5):053006-1-053006-6
为了满足在隧道环境中实现高速率、高质量无线通信的迫切需求,研究了适用于隧道环境的高增益天线,提出了利用二元相控阵天线系统提高隧道内信号传输质量的新方法。相控阵天线系统由两个高增益天线单元及一个移相器组成,通过移相器调整其中一个天线单元的相位,使隧道内合成电场的最小值幅值达到最大,提升信号的平均场强。仿真结果表明:与单个天线发射信号相比,在3000 m隧道轴向传播范围内,相控阵天线系统发射信号合成电场的最低电平最少提升了19.6 dB;与两个天线同时发射信号相比,最低电平最少提升了12.4 dB,取得较好分集优化效果,消除多径效应导致的深度衰落,解决了隧道环境中存在的通信问题。  相似文献   

15.
The performance of a widely tunable phase-based beamformer for phased array antennas using a new technique to cross-polarized the carrier and the sideband, in order to allow the phase control by means of a spatial light modulator, is experimentally demonstrated. The technique relies on the combination of single sideband amplitude modulation (SSB) using a Mach-Zehnder modulator (MZM) and birefringence (to cross-polarized the carrier and the sideband). The architecture has the potential of controlling multiple independent beams simultaneously. The beamformer feeds an eight elements array showing an insertion loss and a reset speed of around 12 dB and 70 ms, respectively. Far-field antenna patterns between 7.5 GHz and 8.5 GHz for nine elevation angles within a range of ±20° have been measured showing beam steering capability, amplitude distribution weighting as well as multibeam operation.  相似文献   

16.
The possibility of approximating the sound field in the region of interference maxima using the equivalent plane wave model with the actual amplitude and the average ??effective?? phase velocity calculated or measured by the phase gradient at the array aperture is discussed. The method is substantiated by studying the mode, interference, and phase structures of the low-frequency sound field along with the spatial responses of an extended linear array. For bottom-moored or towed geophysical arrays whose sizes are large compared to the wavelength, both the necessity and the possibility of reducing the error in taking the bearing of a sound source in a waveguide are justified. The use of the proposed model is recommended for approximate matching of the array to the transfer function of the waveguide to reduce the bearing error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号