首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Diblock copolymers comprising a highly biocompatible poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) block and a poly(2-(dimethylamino)ethyl methacrylate) (PDMA) block were evaluated for the synthesis of sterically stabilized gold nanoparticles in aqueous solution. The PDMA block becomes partially protonated on addition of HAuCl4, and the remaining nonprotonated tertiary amine groups reduce the AuCl4- counterion to zerovalent gold in situ. This approach results in the adsorption of the PDMA block onto the gold nanoparticle surface while the PMPC chains serve as a stabilizing block, producing highly biocompatible gold sols in aqueous solution at ambient temperature without any external reducing agent. The size and shape of gold nanoparticles could be readily controlled by tuning synthesis parameters such as the block composition and the relative and absolute concentrations of the PMPC-PDMA diblock copolymer and HAuCl4. These highly biocompatible gold sols have potential biomedical applications.  相似文献   

2.
利用可逆-加成断裂链转移聚合得到全亲水性的嵌段共聚物(PEO-b-PNIPAM), 通过"grafting to"使其接枝到金纳米粒子表面. 通过透射电子显微镜、 紫外-可见吸收光谱、 能谱分析及动态光散射研究了杂化的金纳米粒子的壳层结构及温度响应行为. 实验结果表明, 得到核壳结构的金纳米粒子, 同时其壳层具有温度响应行为. 随着温度的升高, 其流体力学半径略有减小. 在整个升温过程中, 由于外层PEO链段的抑制作用, 没有发生粒子间的聚集.  相似文献   

3.
We report a facile strategy to synthesize amphiphilic gold (Au) nanoparticles functionalized with a multilayer, micelle-like structure consisting of a Au core, an inner hydroxylated polyisoprene (PIOH) layer, and an outer polystyrene shell (PS). Careful control of enthalpic interactions via a systematic variation of structural parameters, such as number of hydroxyl groups per ligand (N(OH)) and styrene repeating units (N(PS)) as well as areal chain density of ligands on the Au-core surface (Σ), enables precise control of the spatial distribution of these nanoparticles. This control was demonstrated in a lamellae-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) diblock copolymer matrix, where the favorable hydrogen-bonding interaction between hydroxyl groups in the PIOH inner shell and P2VP chains in the PS-b-P2VP diblock copolymer matrix, driving the nanoparticles to be segregated in P2VP domains, could be counter balanced by the enthalphic penalty of mixing of the PS outer brush with the P2VP domains. By varying N(OH), N(PS), and Σ, the nanoparticles could be positioned in the PS or P2VP domains or at the PS/P2VP interface. In addition, the effect of additives interfering with the hydrogen-bond formation between hydroxyl groups on Au nanoparticles and P2VP chains in a diblock copolymer matrix was investigated, and an interesting pea-pod-like segregation of Au nanoparticles in PS domains was observed.  相似文献   

4.
Double hydrophilic diblock copolymer, poly(N,N‐dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide‐co‐3‐azidopropylacrylamide) (PDMA‐b‐P(NIPAM‐co‐AzPAM), containing azide moieties in one of the blocks was synthesized via consecutive reversible addition‐fragmentation chain transfer polymerization. The obtained diblock copolymer molecularly dissolves in aqueous solution at room temperature, and can further supramolecularly self‐assemble into core‐shell nanoparticles consisting of thermoresponsive P(NIPAM‐co‐AzPAM) cores and water‐soluble PDMA coronas above the lower critical solution temperature of P(NIPAM‐co‐AzPAM) block. As the micelle cores contain reactive azide residues, core crosslinking can be facilely achieved upon addition of difunctional propargyl ether via click chemistry. In an alternate approach in which the PDMA‐b‐P(NIPAM‐co‐AzPAM) diblock copolymer was dissolved in a common organic solvent (DMF), the core‐crosslinked (CCL) micelles can be fabricated via “click” crosslinking upon addition of propargyl ether and subsequent dialysis against water. CCL micelles prepared by the latter approach typically possess larger sizes and broader size distributions, compared with that obtained by the former one. In both cases, the obtained (CCL) micelles possess thermoresponsive cores, and the swelling/shrinking of which can be finely tuned with temperature, rendering them as excellent candidates as intelligent drug nanocarriers. Because of the high efficiency and quite mild conditions of click reactions, we expect that this strategy can be generalized for the structural fixation of other self‐assembled nanostructures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 860–871, 2008  相似文献   

5.
Synthesis of the ABA triblock copolymer nanoparticles of poly(N,N‐dimethylacrylamide)‐block‐polystyrene‐block‐poly(N,N‐dimethylacrylamide) (PDMA‐b‐PS‐b‐PDMA) by seeded RAFT polymerization is performed, and the effect of the introduced third poly(N,N‐dimethylacrylamide) (PDMA) block on the size and morphology of the PDMA‐b‐PS‐b‐PDMA triblock copolymer nanoparticles is investigated. This seeded RAFT polymerization affords the in situ synthesis of the PDMA‐b‐PS‐b‐PDMA core‐corona nanoparticles, in which the middle solvophobic PS block forms the compacted core, and the first solvophilic PDMA block and the introduced third PDMA block form the solvated complex corona. During the seeded RAFT polymerization, the introduced third PDMA block extends, and the molecular weight of the PDMA‐b‐PS‐b‐PDMA triblock copolymer linearly increases with the monomer conversion. It is found that, the size of the PS core in the PDMA‐b‐PS‐b‐PDMA triblock copolymer core‐corona nanoparticles is almost equal to that in the precursor of the poly(N,N‐dimethylacrylamide)‐block‐polystyrene diblock copolymer core‐corona nanoparticles and it keeps constant during the seeded RAFT polymerization, and whereas the introduction of the third PDMA block leads to a crowded complex corona on the PS core. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1777–1784  相似文献   

6.
This article reports on optically active core/shell nanoparticles constituted by chiral helical polymers and prepared by a novel approach: using self‐assembled polymer micelles as reactive nanoreactors. Such core/shell nanoparticles were composed of optically active helical‐substituted polyacetylene as the core and thermosensitive poly(N‐isopropylacrylamide) as the shell. The synthetic procedure is divided into three major steps: (1) synthesis of amphiphilic diblock copolymer bearing polymerizable C[tbond]C bonds via atom transfer radical polymerization, followed by (2) self‐assembly of the diblock copolymer to form polymer micelles; and (3) catalytic emulsion polymerization of substituted acetylene monomer conducted using the polymer micelles as reactive nanoreactors leading to the core/shell nanoparticles. The core/shell nanoparticles simultaneously exhibited remarkable optical activity and thermosensitivity. The facile, versatile synthesis methodology opens new approach toward preparing novel multifunctional core/shell nanoparticles.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Poly(2‐(dimethylamino)ethyl methacrylate)‐b‐poly(γ‐methacryloxypropyl‐trimethoxysilane) (PDMA‐b‐PMPS) was synthesized via consecutive reversible addition‐fragmentation chain transfer (RAFT) polymerizations in 1,4‐dioxane. Subsequent micellization of the obtained amphiphilic diblock polymer in aqueous solution led to the formation of nanoparticles consisting of hydrophobic PMPS cores and well‐solvated PDMA shells. Containing tertiary amine residues, PDMA blocks in micelle coronas can spontaneously catalyze the sol–gel reactions of trimethoxysilyl groups within PMPS cores, leading to the formation of hybrid nanoparticles coated with PDMA brushes. Transmission electron microscopy (TEM) and laser light scattering (LLS) revealed the presence of monodisperse spherical hybrid nanoparticles, and the grafting density of PDMA chains at the surface of nanoparticle cores was estimated to be ~5.8 nm2/chain. PDMA brushes exhibit dual stimuli‐responsiveness, and the swelling/collapse of them can be finely tuned with solution pH and temperatures. The obtained multi‐responsive hybrid nanoparticles might find potential applications in fields such as smart devices, recyclable catalysts, and intelligent nanocarriers for drug delivery or gene transfection. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2379–2389, 2008  相似文献   

8.
The silica/polymer hybrid hollow nanoparticles with channels and gatekeepers were successfully fabricated with a facile strategy by using thermoresponsive complex micelles of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and poly(N-isopropylacrylamide)-b-poly(4-vinylpyridine) (PNIPAM-b-P4VP) as the template. In aqueous solution, the complex micelles (PEG-b-PNIPAM/PNIPAM-b-P4VP) formed with the PNIPAM block as the core and the PEG/P4VP blocks as the mixed shell at 45 °C and pH 4.0. After shell cross-linking by 1,2-bis(2-iodoethoxyl)ethane (BIEE), tetraethylorthosilicate (TEOS) selectively well-deposited on the P4VP block and processed the sol-gel reaction. When the temperature was decreased to 4 °C, the PNIPAM block became swollen and further soluble, and the PEG-b-PNIPAM block copolymer escaped from the hybrid nanoparticles as a result of swelled PNIPAM and weak interaction between PEG and silica at pH 4.0. Therefore, the hybrid hollow silica nanoparticles with inner thermoresponsive PNIPAM as gatekeepers and channels in the silica shell were successfully obtained, which could be used for switchable controlled drug release. In the system, the complex micelles, as a template, could avoid the formation of larger aggregates during the preparation of the hybrid hollow silica nanoparticles. The thermoresponsive core (PNIPAM) could conveniently control the hollow space through the stimuli-responsive phase transition instead of calcination or chemical etching. In the meantime, the channel in the hybrid silica shell could be achieved because of the escape of PEG chains from the hybrid nanoparticles.  相似文献   

9.
Association behavior of diblock copolymer poly(4-hydroxystyrene)-block-poly(ethylene oxide) (PHOS-PEO) in aqueous solutions and solutions in water/tetrahydrofuran mixtures was studied by static, dynamic, and electrophoretic light scattering, (1)H NMR spectroscopy, transmission electron microscopy, and cryogenic field-emission scanning electron microscopy. It was found that, in alkaline aqueous solutions, PHOS-PEO can form compact spherical nanoparticles whose size depends on the preparation protocol. Instead of a core/shell structure with segregated blocks, the PHOS-PEO nanoparticles have intermixed PHOS and PEO blocks due to hydrogen bond interaction between -OH groups of PHOS and oxygen atoms of PEO and are stabilized electrostatically by a fraction of ionized PHOS units on the surface.  相似文献   

10.
The water‐soluble gold nanoparticles stabilized by well‐defined comb‐shaped copolymers have been synthesized successfully. The hybrid nanoparticles consist of gold core and poly[poly(ethylene oxide) methyl ether acrylate]‐block‐poly(N‐isopropylacrylamide) [P(A‐MPEO)‐block‐PNIPAM] shell. The water‐soluble comb‐shaped copolymers, P(A‐MPEO)‐block‐PNIPAM with PNIPAM as a handle, were successfully synthesized via a macromonomer technique using reversible addition fragmentation chain transfer (RAFT) polymerization method. The terminal dithioester group of the comb‐shaped copolymer was reduced to a thiol end group forming SH‐terminated copolymers, P(A‐MPEO)‐block‐PNIPAM‐SH. Successively they were used to stabilize gold nanoparticles by the “grafting‐to” approach. The hybrid nanoparticles were characterized by TEM, UV–vis, and HRTEM. Because of the thermosensitive property of PNIPAM in aqueous solution, the comblike copolymer‐tethered gold nanoparticles show a sharp and reversible phase transition at 30 °C in aqueous solution, which was determined by microdifferential scanning calorimetry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 341–352, 2008  相似文献   

11.
This paper describes the synthesis of gold nanoparticles stabilized by two series of new dendritic disulfide ligands with alkene groups at their peripheries. Intraparticle cross-linking of the alkene groups around the periphery of each nanoparticle was achieved by Grubbs' metathesis. It was demonstrated that cross-linking of the organic ligand has no effect on the size or morphology of the inorganic gold core as determined by TEM and UV-vis measurements. However, the introduction of cross-linking at the surface of the ligand enhances the stability of the gold nanocore toward chemical etchant agents (NaCN) and thermal treatment. The impact of cross-linking on nanoparticle stability is greater when the cross-linking is closer to the nanoparticle surface (i.e., using lower generation dendritic ligands). Attempts to perform further synthetic transformation on the hybrid materials in order to remove the gold core led to insoluble products composed predominantly of the dendritic ligand.  相似文献   

12.
The effect of solution-state nanoscale structures on the assembly of micropatterns by solvent evaporation was explored with a novel amphiphilic diblock copolymer synthesized by reversible addition–fragmentation chain transfer polymerization. A copolymer of the structure poly(styrene-alt-maleic anhydride)75-b-isoprene84 was assembled into inverse micelles in toluene, and covalently stabilized in the core by reactive amidation of maleic anhydride residues with 2,2′-(ethylenedioxy)bis(ethylamine) to create core-crosslinked nanoparticles (CCNPs) or in the shell by the photoinitiated radical crosslinking reactions of isoprene units to create large crosslinked aggregates (LCAs) of heterogeneous sizes and shapes. Micropatterned films were prepared by the deposition of the diblock copolymer as a solution in acetone and the nanoscale structures (inverse micelle, crosslinked aggregate, and CCNP) as solutions in toluene onto trimethylysilyl chloride treated glass microscope slides under ambient conditions. An analysis by optical microscopy and tapping-mode atomic force microscopy (AFM) indicated that the nanoscale surface topology could be controlled by the pre-establishment of the block copolymer phase segregation into well-defined core–shell nanoassemblies in solution. The most interesting films resulted from the evaporative deposition of inverse micelle and CCNP solutions, which afforded uniform, straplike micropatterns of similar dimensions on the microscale and low surface roughness on the nanoscale (roughness = 4 ± 1 and 6± 1 nm by AFM). © 2006 Wiley Periodicals, Inc. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5218–5228, 2006  相似文献   

13.
Supramolecular materials with reversible responsiveness to environmental changes are of particular research interest in recent years. Inclusion complexation between cyclodextrin (CD) and ferrocene (Fc) is well-known and extensively studied because of its reversible association-dissociation controlled by the redox state of Fc. Although there are quite a few reported nanoscale materials incorporating this host-guest pair, polymeric hydrogels with electrochemical activity based on this interactive pair are still rare. Taking advantage of our previous reported hybrid inclusion complex (HIC) hydrogel structure, a new Fc-HIC was designed and obtained with β-CD-modified quantum dots as the core and Fc-ended diblock co-polymer p(DMA-b-NIPAM) as the shell, to achieve an electrochemically active hydrogel at elevated temperatures. Considering the two independent cross-linking strategies in the network structure, i.e., the interchain aggregation of pNIPAM and inclusion complexation between CD and Fc on the surface of the quantum dots, the hydrogel was fully thermo-reversible and its gel-sol transition was achieved after the addition of either an oxidizing agent or a competitive guest to Fc.  相似文献   

14.
Monomethoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone)(MPEG‐b‐PCL) diblock copolymers were synthesized via a ring‐opening polymerization. The polymeric nanoparticles prepared by precipitation/solvent evaporation exhibit a core–shell structure, characterized by dynamic light scattering (DLS), nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). The hydrolytic degradation of those nanoparticles was studied by DLS, NMR, and gel permeation chromatography (GPC). It was found that the molecular weight of PCL block in a copolymer significantly affects the stability of nanoparticles in aqueous solution and nanoparticles with shorter PCL block length degraded faster. The degradation behaviors could be divided into two stages with slow degradation at the interface region via swelling effect and fast degradation at inner core via caves and channels formed by cleavage of ester bonds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Water‐soluble crosslinked hollow nanoparticles were prepared using pH‐responsive anionic polymer micelles as templates. The template micelles were formed from pH‐responsive diblock copolymers (PAMPS‐PAaH) composed of the poly(sodium 2‐(acrylamido)‐2‐methylpropanesulfonate) and poly(6‐(acrylamido)hexanoic acid) blocks in an aqueous acidic solution. The PAMPS and PAaH blocks form a hydrophilic anionic shell and hydrophobic core of the core‐shell polymer micelle, respectively. A cationic diblock copolymer (PEG‐P(APTAC/CEA)) with the poly(ethylene glycol) block and random copolymer block composed of poly((3‐acrylamidopropyl)trimethylammonium chloride) containing a small amount of the 2‐(cinnamoyl)ethylacrylate photo‐crosslinkable unit can be adsorbed to the anionic shell of the template micelle due to electrostatic interaction, which form a core‐shell‐corona three‐layered micelle. The shell of the core‐shell‐corona micelle is formed from a polyion complex with anionic PAMPS and cationic P(APTAC/CEA) chains. The P(APTAC/CEA) chains in the shell of the core‐shell‐corona micelle can be photo‐crosslinked with UV irradiation. The template micelle can be dissociated using NaOH, because the PAaH blocks are ionized. Furthermore, electrostatic interactions between PAMPS and PAPTAC in the shell are screened by adding excess NaCl in water. The template micelles can be completely removed by dialysis against water containing NaOH and NaCl to prepare the crosslinked hollow nanoparticles. Transmission electron microscopy observations confirmed the hollow structure. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core–shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core–shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 °C for 2.5 h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA–silica hybrid shell. The resulting hybrid silica core–shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core–shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA–silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core–shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules.  相似文献   

17.
The mean diameter of poly[2‐(dimethylamino)ethyl methacrylate]‐block‐poly[2‐(diisopropylamino)ethyl methacrylate] (PDMA‐PDPA) diblock copolymer micelles can be easily adjusted from 27–155 nm (as measured by DLS) by either selective quaternisation of the PDMA block or by adding PDPA homopolymer prior to micellisation; these self‐assembled nanostructures can be shell crosslinked with 1,2‐bis‐(2‐iodoethoxy)ethane and subsequently used as templates for the preparation of silica‐coated nanoparticles and, ultimately, hollow silica nanoparticles.

  相似文献   


18.
Template synthesis of various morphological gold colloidal nanoparticles using a thermoresponsive and pH-responsive coordination triblock copolymer of poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide) is studied. The template morphology of the thermoresponsive and pH-responsive coordination triblock copolymer, which can be tuned by simply changing the pH or temperature of the triblock copolymer aqueous solution, ranges from single chains to core-corona micelles and further to micellar clusters. Various morphological gold colloidal nanoparticles such as discrete gold nanoparticles, gold@polymer core-shell nanoparticles, and gold nanoparticle clusters are synthesized on the corresponding template of the triblock copolymer by first coordination with gold ions and then reduction by NaBH4. All three resultant gold colloidal nanoparticles are stable in aqueous solution, and their sizes are 2, 10, and 7 nm, respectively. The gold@polymer core-shell nanoparticles are thermoresponsive. The gold nanoparticle cluster has a novel structure, and each one holds about 40 single gold nanoparticles.  相似文献   

19.
Nanocapsules with an oily core and an organic/inorganic hybrid shell were elaborated by miniemulsion (co)polymerization of styrene, divinylbenzene, γ‐methacryloyloxy propyl trimethoxysilane, and N‐isopropyl acrylamide. The hybrid copolymer shell membrane was formed by polymerization‐induced phase separation at the interface of the oily nanodroplets with water. It was shown that the size, size distribution, and colloidal stability of the miniemulsion droplets were extremely dependent on the nature of the oil phase, the monomer content and the surfactant concentration. The less water‐soluble the hydrocarbon template and the higher the monomer content, the better the droplet stability. The successful formation of nanocapsules with the targeted core‐shell morphology (i.e., a liquid core surrounded by a solid shell) was evidenced by cryogenic transmission electron microscopy. Both nanocapsules and nanoparticles were produced by polymerization of the miniemulsion droplets. The proportion of nanoparticles increased with increasing monomer concentration in the oil phase. These undesirable nanoparticles were presumably formed by homogeneous nucleation as we showed that micellar nucleation could be neglected under our experimental conditions even for high surfactant concentrations. The introduction of γ‐methacryloyloxy propyl trimethoxysilane was considered to be the main reason for homogeneous nucleation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 593–603, 2010  相似文献   

20.
Polymerization‐induced self‐assembly (PISA) enables the scalable synthesis of functional block copolymer nanoparticles with various morphologies. Herein we exploit this versatile technique to produce so‐called “high χ–low N” diblock copolymers that undergo nanoscale phase separation in the solid state to produce sub‐10 nm surface features. By varying the degree of polymerization of the stabilizer and core‐forming blocks, PISA provides rapid access to a wide range of diblock copolymers, and enables fundamental thermodynamic parameters to be determined. In addition, the pre‐organization of copolymer chains within sterically‐stabilized nanoparticles that occurs during PISA leads to enhanced phase separation relative to that achieved using solution‐cast molecularly‐dissolved copolymer chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号