首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Seven lanthanide complexes [Ln(OPPh3)3(NO3)3] ( 1 – 3 ) (OPPh3 = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh3)4(NO3)2](NO3) ( 4 ), [Ln(OPPh3)3(NO3)3]2 ( 5 – 7 ) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh3 ligand in the air. These complexes were characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1 – 4 are mononuclear complexes formed by OPPh3 ligands and nitrates. The asymmetric units of complexes 5 – 7 consist of two crystallographic‐separate molecules. Complex 1 is self‐assembled to construct a 2D layer‐structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain‐like structure that was assembled by OPPh3 ligands and nitrate ions through C–H ··· O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb3+ (λem = 480, 574 nm) and Eu3+ (λem = 552, 593, 619, 668 nm).  相似文献   

2.
Synthesis, Structures, and EPR-Spectra of the Rhenium(II) Nitrosyl Complexes [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)], [Re(NO)Cl2(OPPh3)2(OReO3)], and [Re(NO)Cl2(OPPh3)3](ReO4) The paramagnetic rhenium(II) nitrosyl complexes [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)], [Re(NO)Cl2(OPPh3)2 · (OReO3)], and [Re(NO)Cl2(OPPh3)3](ReO4) are formed during the reaction of [ReOCl3(PPh3)2] with NO gas in CH2Cl2/EtOH. These and two other ReII complexes with 5 d5 ”︁low-spin”︁”︁-configuration can be observed during the reaction EPR spectroscopically. Crystal structure analysis shows linear coordinated NO ligands (Re–N–O-angles between 171.9 and 177.3°). Three OPPh3 ligands are meridionally coordinated in the final product of the reaction, [Re(NO)Cl2(OPPh3)3][ReO4] (monoclinic, P21/c, a = 13.47(1), b = 17.56(1), c = 24.69(2) Å, β = 95.12(4)°, Z = 4). [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)] (triclinic P 1, a = 10.561(6), b = 11.770(4), c = 18.483(8) Å, α = 77.29(3), β = 73.53(3), γ = 64.70(4)°, Z = 2) and [Re(NO)Cl2 (OPPh3)2(OReO3)] (monoclinic P21/c, a = 10.652(1), b = 31.638(4), c = 11.886(1) Å, β = 115.59(1)°), Z = 4) can be isolated at shorter reaction times besides the complexes [Re(NO)Cl3(Ph3P)2], [Re(NO)Cl3(Ph3P) · (Ph3PO)], and [ReCl4(Ph3P)2].  相似文献   

3.
The preparation of 3,6-dinitro-2-R-1,8-naphthyridines ( 1 , R = OH, NH2, OC2H5, Cl) is described and their addition patterns with liquid ammonia are studied. Compound 1 (R = OH, NH2) gives with liquid ammonia at - 45° as well as at room temperature formation of the covalent ó-adduct 4-amino-1,4-dihydro-3,6-dinitro-2-R-1,8-naphthyridine ( 2 , R = OH, NH2). Compound 1 (R = OC2H5) yields with ammonia at - 45° two σ-adducts, i.e. the C-4 adduct ( 2 , R = OC2H5) and the C-5 adduct 5-amino-5,8-dihydro-3,6-dinitro-2-R-1,8-naphthyridine ( 3 , R = OC2H5). The ratio is about 50:50. This ratio depends on the temperature; at room temperature the C-5 adduct is more favoured. After staying overnight the ethoxy group has been exchanged for the amino group, yielding 2 (R = NH2). With 1 (R = Cl) both adducts 2 (R = CI) and 3 (R = CI) were formed, the C-4 adduct 2 (R = CI) is more favoured at room temperature. Prolonged treatment with liquid ammonia leads to an exchange of the chloro atom by the amino group, yielding 2 (R = NH2).  相似文献   

4.
Preparation, Characterisation, and Crystal Structures of the Pseudohalogen Crown Ether Complexes [K([18]crown‐6)(X)(OPPh3)] (X = N3, OCN and SCN) The potassium crown ether complexes [K([18]Crown‐6)(X)(OPPh3)] (with X = N3, OCN and SCN) can be obtained by reaction of KX with 18‐crown‐6 (1, 4, 7, 10, 13, 16‐hexaoxacyclooctadecane and triphenylphosphane in THF exposed to UV light. All crown ether complexes were characterized by means of vibrational spectroscopy and X‐ray diffraction. They crystallize in the rhombic pointgroup R3m with three molecules in the unit cell: [K([18]crown‐6) (N3)(OPPh3)] ( 1 ): lattice constants at 293 K: a = b = 14.213(2) Å; c = 13.951(2) Å; R1 = 0.0249. [K([18]crown‐6)(OCN)(OPPh3)] ( 2 ): a = b = 14.239(2) Å; c = 13.8927(14) Å; R1 = 0.0257. [K([18]crown‐6)(NCS)(OPPh3)] ( 3 ): a = b = 14.339(2) Å; c = 14.266(2) Å; R1 = 0.0264.  相似文献   

5.
A highly efficient alkyl-alkynyl coupling system is described which is promoted by a well-defined and moisture-stable pincer complex [NiCl{C6H3-2,6-(OPPh2)2}] (1). Non-activated alkyl halides could be efficiently coupled with phenylethynyl- and trimethylsilylethynyllithium reagents at room temperature. Compared to the alkylation of primary alkyl halides with alkynyllithium reagents in literatures, this method requires milder conditions (room temperature) and proceeds quickly. This research will make these readily available alkynyllithium reagents much more useful for organic synthesis.  相似文献   

6.
[VCl3(NPPh3)(OPPh3)], a Phosphorane Iminato Complex of Vanadium(IV) The title compound has been prepared from vanadium tetrachloride and Me3SiNPPh3 in the presence of OPPh3 in CCl4 solution, forming orange-red, moisture sensitive crystals, which were characterized by an X-ray structure determination. Space group Cc, Z = 4, 2 560 observed unique reflections, R = 0.049. Lattice dimensions at 0°C: a = 1 018(1), b = 1 826(2), c = 1 859(2) pm, β = 93.65(9)° [VCl3(NPPh3)(OPPh3)] forms monomeric molecules, in which the vanadium atom is coordinated in a distorted square pyramidal fashion with the (NPPh3)? ligand in apical position. The three chlorine atoms and the oxygen atom of the OPPh3 molecule occupy the basal positions. The phosphorane iminato group V?N?PPh3 is nearly linear (bond angle VNP 161.4°), the bond lengths VN (169 pm) and PN (162 pm) correspond with double bonds.  相似文献   

7.
Cycloaddition of dichloroketene to N,N-disubstituted 6-aminomethylene-5,6-dihydro-2-phenylbenzothiazol-7-(4H)ones gave in good yield N,N-disubstituted 4-amino-3,3-dichloro-3,4,5,6-tetrahydro-8-phenyl-2H-pyrano[3,2-g]benzothiazol-2-ones II, which are derivatives of the new heterocyclic system 2H-pyrano[3,2-g]benzothiazole. Dehydrochlorination with triethylamine of II afforded N,N-disubstituted 4-amino-3-chloro-5,6-dihydro-8-phenyl-2H-pyrano[3,2-g]benzothiazol-2-ones III in good to moderate yield. The dimethylamino adduct was dehydrochlorinated in high yield by refluxing in toluene, whereas the diisopropylamino adduct gave in low yield 6-(2,2-dichloroethylidene)-5,6-dihydro-2-phenylbenzothiazol-7-(4H)one with the triethylamine treatment. The dehydrochlorinated product IIId (NR2 = pyrrolidino) was obtained directly in low yield by cycloaddition of dichloroketene to the corresponding enaminone. Full aromatisation of IIIa,g [NR2 = N(CH3)2 and N(CH3)C6H5, respectively] to the corresponding N,N-disubstituted 4-amino-3-chloro-8-phenyl-2H-pyrano-[3,2-g]benzothiazol-2-ones was accomplished with DDQ in refluxing benzene.  相似文献   

8.
Silanediyldiphosphinite tBu2Si(OPPh2)2 1 has been synthesised. 1 reacts with the norbornadiene complexes C7H8M(CO)4 (M = Cr, Mo, W) to give six-membered chelate rings of the type cis-M(CO)4[tBu2Si(OPPh2)2] 2–4 . The crystal structures of the chromium and molybdenum complexes cis-Cr(CO)4[tBu2Si(OPPh2)2] 2 and cis-Mo(CO)4[tBu2Si(OPPh2)2] 3 have been determined. Both complexes crystallise in the triclinic system (space group P1 ) with unit cell parameters: ( 2 ) a = 1 093(3) pm, b = 1 477(5) pm and c = 1 542(5) pm; α = 108.4(2)°, b? = 103.87(11)° and b? = 104.57(10)°; U = 2.143(12) nm3; Z = 2; ( 3 ) a = 1 097.8(2) pm, b = 1 483.7(2) pm and c = 1 554.3(2) pm; α = 108.10(1)°, b? = 103.956(6)° and γ = 104.213(7)°; U = 2.1899(6) nm3; Z = 2. Both 2 and 3 consist of discrete, slightly distorted, octahedral monomers in which the six-membered chelate rings are essentially planar. In contrast, the conformations of the chelate rings found in crystal structures of analogous complexes vary from twist-boat to “chaise longue”.  相似文献   

9.
Some organotransition metal complexes, bis (sulfur dioxide)tetrakis (triphenylphosphine oxide) manganese(II)dioxide [Mn(OPPh3)4I2(SO2)2] and bis(tribenzylphosphine)copper(II) thiophenolate [Cu(PBz3)2SPh], were identified as candidate coatings for the detection of sulfur dioxide on piezoelectric crystal sensors. After treatment to form the mono (sulfur dioxide) adduct, the first complex binds sulfur dioxide to reform the bis adduct, and can be used as a coating for an integrating piezoelectric sensor. The initial complex can be regenerated by placing the coated piezoelectric sensor under vacuum for 4 h. The specified copper complex was found to act as a reversible coating for the detection sulfur dioxide in the range 10–1000 mg l?1.  相似文献   

10.
Reactions of active methylene compounds HA (malononitrile, β-diketones, cyclopentadiene) with the dioxygen adduct [Rh(dppe)O2]BF4 give new hydroperoxorhodium(III) complexes of the type [Rh(dppe)(A)OOH]BF4. The complexes readily convert PPh3 into OPPh3, but do not oxidise ketones or olefins, which instead undergo extensive isomerization.  相似文献   

11.
The acetone adduct of trirhenium nonachloride, Re3Cl9 (acet)3, where acet=acetone, reacts in acetone solution at room temperature with tetrabutylammonium chalcogenides [N(C4H9)4]2E, where E=S, Se and Te, producing the tetrabutylammonium salts of the new cluster anions [Re3 (μ3-E) (μ2-Cl)3Cl6]2−. In the crystallographically determined structures of these compounds, triangles of rhenium atoms are capped by single chalcogen atoms, giving anions of near C3v symmetry. The compound where E=S is also formed in the reaction of Re3Cl9 with [N(C4H9)4]2 [MoS4] by sulfide transfer.  相似文献   

12.
The synthesis of an N‐heterocyclic silylene‐stabilized digermanium(0) complex is described. The reaction of the amidinate‐stabilized silicon(II) amide [LSiN(SiMe3)2] ( 1 ; L=PhC(NtBu)2) with GeCl2?dioxane in toluene afforded the SiII–GeII adduct [L{(Me3Si)2N}Si→GeCl2] ( 2 ). Reaction of the adduct with two equivalents of KC8 in toluene at room temperature afforded the N‐heterocyclic carbene silylene‐stabilized digermanium(0) complex [L{(Me3Si)2N}Si→ Ge?Ge←Si{N(SiMe3)2}L] ( 3 ). X‐ray crystallography and theoretical studies show conclusively that the N‐heterocyclic silylenes stabilize the singlet digermanium(0) moiety by a weak synergic donor–acceptor interaction.  相似文献   

13.
Tris(9′,10′‐dimethyl[9,10]ethanoanthracene[11′,12′: 1,9;11″,12″: 16,17;11′′′,12′′′: 30,31])[5,6]fullerene C60, the orthogonal (e,e,e)‐tris‐adduct of C60 and 9,10‐dimethylanthracene, was obtained from [4+2]‐cycloaddition (Diels–Alder reaction) at room temperature. The thermally unstable orange red (e,e,e)‐tris‐adduct was purified by chromatography and was isolated in the form of red monoclinic crystals. Its C3‐symmetric addition pattern was established spectroscopically. Its structure could be further investigated by single crystal X‐ray diffraction. The (e,e,e)‐tris‐adduct of C60 and 9,10‐dimethylanthracene has earlier been suggested as intermediate and reversibly formed critical component in ‘template directed’ addition reactions of C60. This previously elusive compound has now been isolated and structurally characterized.  相似文献   

14.
Known to be a facile irontricarbonyl transfer reagent, (η2-cis-C8H14)2Fe(CO)3 1 transfers its Fe(CO)3 unit to a variety of ligands at low temperature. Stirring a THF mixture of 1 and PhC=CPh under N2(g) at ?60 °C for 1 h then at room temperature overnight provides mainly a flyover-bridge product [-CPh=CPhC(0)-CPh=CPh-]Fe2(CO)6 2 with the organic bridge on diiron core in a complicated μ-(1,2,5-η3:1,4,5-η3) fashion. The keto fragment in 2 comes presumably from the decomposition of 1 that liberates CO. However, stirring a THF mixture of 1 and PhC=CPh under CO(g) at ?60 °C for 3 h then at room temperature overnight results in [-C(0)CPh=CPhC(0)-]Fe(CO)4 3, a compound not isolated in the earlier thermal or photochemical reactions of PhC=CPh with ironcarbonyl. The X-ray structure determinations for both 2 and 3 have been performed.  相似文献   

15.
Mononitrosyl and trans ‐Dinitrosyl Complexes of Phthalocyaninates of Manganese and Rhenium Tetra(n‐butyl)ammonium or di(triphenylphosphane)iminium nitrosylacidophthalocyaninato(2–)manganate, (cat)[Mn(NO)(X)pc2–] (X = ONO, NCO, N3; cat = nBu4N, PNP) is prepared from acidophthalocyaninato(2–)manganese, [Mn(X)pc2–], (cat)NO2 and (nBu4N)BH4 in CH2Cl2 or from nitrosylphthalocyaninato(2–)manganese, [Mn(NO)pc2–] and (nBu4N)X (X = ONO, NCO, N3, NCS) at T < 120 °C, respectively. [Mn(NO)(X)pc2–] dissociates in methanol, and [Mn(NO)pc2–] precipitates. Nitrito(O)phthalocyaninato(2–)manganese, (cat)NO2 and hydrogensulfide yield trans‐di(nitrosyl)phthalocyaninato(2–)manganate, trans[Mn(NO)2pc2–], isolated as red violet (PNP) and (nBu4N) complex salt. Nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)manganese, [Mn(NO)(OPPh3)pc2–] is obtained by addition of OPPh3 to [Mn(NO)pc2–] at 200 °C. Di(triphenylphosphane)phthalocyaninato(2–)rhenium(II) and (PNP)NO2 in CH2Cl2 or in molten (PNP)NO2 and PPh3 at 100 °C yields green blue l‐di(triphenylphosphane)iminium nitrosylnitrito(O)phthalocyaninato(2–)rhenate, l(PNP)[Re(NO)(ONO)pc2–]. Similarly, but with (nBu4N)NO2 red plates of tetra‐(n‐butyl)ammonium trans‐di(nitrosyl)phthalocyaninato(2–)rhenate, (nBu4N)trans[Re(NO)2pc2–] is isolated. Addition of (PNP)Br or (PNP)PF6 to a concentrated solution of (nBu4N)trans[Re(NO)2pc2–] in pyridine precipitates l(PNP)trans[Re(NO)2pc2–]. (nBu4N)trans[Re(NO)2pc2–] and PPh3 at 300 °C yield blue green nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)‐ rhenium, [Re(NO)(OPPh3)pc2–], that is oxidised with iodine precipitating nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)rhenium triiodide, [Re(NO)(OPPh3)pc2–]I3. The crystal structures of l(PNP)[Mn(NO)(ONO)pc2–] ( 1 ), l(PNP)‐ [Mn(NO)(NCO)pc2–] ( 2 ), l(PNP)trans[Mn(NO)2pc2–] ( 3 ), l(PNP)trans[Re(NO)2pc2–] ( 4 ) [Mn(NO)(OPPh3)pc2–] ( 5 ), [Re(NO)(OPPh3)pc2–] ( 6 ), and [Re(NO)(OPPh3)pc2–]I3 · CH2Cl2 ( 7 ) have been determined. The M–N(NO) distance varies between 1.623(12) Å in 5 and 1.846(3) Å in 3 . The M–N–O moiety is almost linear. The UV‐Vis spectra with the B band at ca. 14500 cm–1and the Q band at 30400 cm–1 do not dependent significantly on the axial ligand and the metal atom and its oxidation state. N–O stretching vibrations are observed in the IR spectra between 1701 cm–1 in 3 and 1753 cm–1 in [Mn(NO)pc2–] or for the Re series between 1571 cm–1 in 4 and 1724 cm–1 in 7 . M–N(NO) stretching and M–N–O deformation vibrations are assigned in the IR spectra and resonance Raman spectra between 486 cm–1 in 4 and 620 cm–1 in 1 .  相似文献   

16.
Phases and structural phase transitions of the compounds (CH3NH3)2MnCl4, (C2H5NH3)2MnCl4 and (C3H7NH3)2MnCl4 have been studied by means of thermoanalytical methods (DSC) and X-ray single crystal and powder diffraction data in the temperature range of 85–480°K at normal pressure. All phases show perovskite-like layer structures. The high temperature phases (α phase) correspond to the K2NiF4 type and may be regarded as the aristotype of each polymorphic compound. All transitions are reversible. Transition patterns are:
Based on the DSC peak-shape analysis and diffraction data a model of a tilting system of the MnCl6-octahedra layer is introduced in order to understand essential features of structures of different phases and their transition behavior. Single crystal film data of (C3H7NH3)2MnCl4 phases reveal some disorder phenomena. The ε phase exhibits a superstructure along [010] with a triplication of the shortest axis corresponding to the δ phase. The γ phase of this compound shows strong satellite reflections, due to a transverse distortion wave along the [100] lattice direction.  相似文献   

17.
Oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) react with phenylacetylene under formation of complexes with ylide‐type ligands. Compounds of the compositions [ReOCl3(PPh3){C(Ph)C(H)(PPh3)}] ( 1 ), [ReOBr3(OPPh3){C(Ph)C(H)(PPh3)}] ( 2 ), and [ReOBr3(OPPh3){C(H)C(Ph)(PPh3)}] ( 3 ) were isolated and characterized by X‐ray diffraction. They contain a ligand, which was formed by a nucleophilic attack of released PPh3 at coordinated phenylacetylene. The structures of the products show that there is no preferable position for this attack. Cleavage of the Re–C bond in 3 and dimerization of the organic ligand resulted in the formation of the [{(PPh3)(H)CC(Ph)}2]2+ cation, which crystallized as its [(ReOBr4)(OReO3)]2– salt.  相似文献   

18.
A solvatothermal reaction of the octahedral cluster molybdenum complex (H3O)2[Mo63-Cl)8Cl6] · 6H2O with CaCl2 · 6H2O and OPPh3 in acetonitrile gave the known polymeric complex trans-[{Ca(OPPh3)4}{Mo63-Cl)8Cl6}]. However, a closer examination revealed that this system also produces a novel cluster complex, [Ca(OPPh3)5][Mo63-Cl)8Cl6] · OPPh3, which was isolated and characterized by X-ray diffraction.  相似文献   

19.
Assembly of di[4-(pyridin-3-yl)pyrimidinyl]disulfide (3-ppds) with different metal salts resulted in a variety of coordination polymers that were structurally elucidated. For MnCl2, a 1-D repeated rhomboidal chain structure [MnCl2(3-ppds)2] n (1) was obtained, whereas a 1-D helical chain structure [Zn(NO3)2(3-ppds)] n (2) was built from Zn(NO3)2. A 1-D zigzag chain structure [Cu2(OAc)4(3-ppds)] n (3) was produced from Cu(OAc)2. In all three complexes, the 3-ppds ligand plays the same role as a bis(monodentate) bridging linker but with variations in both C–S–S–C torsion angles and dihedral angles defined by its conjugated heteroaromatic rings (pyrimidine and pyridine). The luminescence properties of the complexes have been evaluated in the solid state.  相似文献   

20.
Reaction of carbene‐stabilized disilicon ( 1 ) with Fe(CO)5 gives the 1:1 adduct L:Si?Si[Fe(CO)4]:L (L:=C{N(2,6‐Pri2C6H3)CH}2) ( 2 ) at room temperature. At raised temperature, however, 2 may react with another equivalent of Fe(CO)5 to give L:Si[μ‐Fe2(CO)6](μ‐CO)Si:L ( 3 ) through insertion of both CO and Fe2(CO)6 into the Si2 core, which represents the first experimental realization of transition metal‐carbonyl‐mediated cleavage of a Si?Si double bond. The structures and bonding of both 2 and 3 have been investigated by spectroscopic, crystallographic, and computational methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号