首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work we study the convergence of the fixed pivot techniques (Kumar and Ramkrishna Chem. Eng. Sci. 51, 1311–1332, 1996) for breakage problems. In particular, the convergence is investigated on four different types of uniform and non-uniform meshes. It is shown that the fixed pivot technique is second order convergent on a uniform and non-uniform smooth meshes. Furthermore, it gives first order convergence on a locally uniform mesh. Finally the analysis shows that the method does not converge on a non-uniform random mesh. The mathematical results of convergence analysis are also validated numerically.  相似文献   

2.
In this paper, we introduce the convergence analysis of the fixed pivot technique given by S. Kumar and Ramkrishna (1996) [28] for the nonlinear aggregation population balance equations which are of substantial interest in many areas of science: colloid chemistry, aerosol physics, astrophysics, polymer science, oil recovery dynamics, and mathematical biology. In particular, we investigate the convergence for five different types of uniform and non-uniform meshes which turns out that the fixed pivot technique is second order convergent on a uniform and non-uniform smooth meshes. Moreover, it yields first order convergence on a locally uniform mesh. Finally, the analysis exhibits that the method does not converge on an oscillatory and non-uniform random meshes. Mathematical results of the convergence analysis are also demonstrated numerically.  相似文献   

3.
In this work, we introduce the convergence analysis of the recently developed finite volume scheme to solve a pure aggregation population balance equation that is of substantial interest in many areas such as chemical engineering, aerosol physics, astrophysics, polymer science, pharmaceutical sciences, and mathematical biology. The notion of the finite volume scheme is to conserve total mass of the particles in the system by introducing weight in the formulation. The consistency of the finite volume scheme is also analyzed thoroughly as it is an influential factor. The convergence study of the numerical scheme shows second order convergence on uniform, nonuniform smooth (geometric) as well as on locally uniform meshes independent of the aggregation kernel. Moreover, the first‐order convergence is shown when the finite volume scheme is implemented on oscillatory and random meshes. In order to check the accuracy, the numerical experimental order of convergence is also computed for the physically relevant as well as analytically tractable kernels and validated against its analytical results.  相似文献   

4.
In this work we are interested in the numerical approximation of 1D parabolic singularly perturbed problems of reaction-diffusion type. To approximate the multiscale solution of this problem we use a numerical scheme combining the classical backward Euler method and central differencing. The scheme is defined on some special meshes which are the tensor product of a uniform mesh in time and a special mesh in space, condensing the mesh points in the boundary layer regions. In this paper three different meshes of Shishkin, Bahkvalov and Vulanovic type are used, proving the uniform convergence with respect to the diffusion parameter. The analysis of the uniform convergence is based on a new study of the asymptotic behavior of the solution of the semidiscrete problems, which are obtained after the time discretization by the Euler method. Some numerical results are showed corroborating in practice the theoretical results on the uniform convergence and the order of the method.  相似文献   

5.
This paper studies a higher order numerical method for the singularly perturbed parabolic convection-diffusion problems where the diffusion term is multiplied by a small perturbation parameter. In general, the solutions of these type of problems have a boundary layer. Here, we generate a spatial adaptive mesh based on the equidistribution of a positive monitor function. Implicit Euler method is used to discretize the time variable and an upwind scheme is considered in space direction. A higher order convergent solution with respect to space and time is obtained using the postprocessing based extrapolation approach. It is observed that the convergence is independent of perturbation parameter. This technique enhances the order of accuracy from first order uniform convergence to second order uniform convergence in space as well as in time. Comparative study with the existed meshes show the highly effective behavior of the present method.  相似文献   

6.
This paper contains error estimates for covolume discretizations of Maxwell's equations in three space dimensions. Several estimates are proved. First, an estimate for a semi-discrete scheme is given. Second, the estimate is extended to cover the classical interlaced time marching technique. Third, some of our unstructured mesh results are specialized to rectangular meshes, both uniform and nonuniform. By means of some additional analysis it is shown that the spatial convergence rate is one order higher than for the unstructured case.

  相似文献   


7.
This paper deals with the numerical approximation of the solution of 1D parabolic singularly perturbed problems of reaction-diffusion type. The numerical method combines the standard implicit Euler method on a uniform mesh to discretize in time and a HODIE compact fourth order finite difference scheme to discretize in space, which is defined on a priori special meshes condensing the grid points in the boundary layer regions. The method is uniformly convergent having first order in time and almost fourth order in space. The analysis of the uniform convergence is made in two steps, splitting the contribution to the error from the time and the space discretization. Although this idea has been previously used to prove the uniform convergence for parabolic singularly perturbed problems, here the proof is based on a new study of the asymptotic behavior of the exact solution of the semidiscrete problems obtained after the time discretization by using the Euler method. Some numerical results are given corroborating in practice the theoretical results.  相似文献   

8.
This paper deals with a numerical method for solving one-dimensional unsteady Burgers–Huxley equation with the viscosity coefficient ε. The parameter ε takes any values from the half open interval (0, 1]. At small values of the parameter ε, an outflow boundary layer is produced in the neighborhood of right part of the lateral surface of the domain and the problem can be considered as a non-linear singularly perturbed problem with a singular perturbation parameter ε. Using singular perturbation analysis, asymptotic bounds for the derivatives of the solution are established by decomposing the solution into smooth and singular components. We construct a numerical scheme that comprises of implicit-Euler method to discretize in temporal direction on uniform mesh and a monotone hybrid finite difference operator to discretize the spatial variable with piecewise uniform Shishkin mesh. To obtain better accuracy, we use central finite difference scheme in the boundary layer region. Shishkin meshes are refined in the boundary layer region, therefore stability constraint is satisfied by proposed scheme. Quasilinearization process is used to tackle the non-linearity and it is shown that quasilinearization process converges quadratically. The method has been shown to be first order uniformly accurate in the temporal variable, and in the spatial direction it is first order parameter uniform convergent in the outside region of boundary layer, and almost second order parameter uniform convergent in the boundary layer region. Accuracy and uniform convergence of the proposed method is demonstrated by numerical examples and comparison of numerical results made with the other existing methods.  相似文献   

9.
To recover the full accuracy of discretized fractional derivatives, nonuniform mesh technique is a natural and simple approach to efficiently resolve the initial singularities that always appear in the solutions of time-fractional linear and nonlinear differential equations. We first construct a nonuniform L2 approximation for the fractional Caputo's derivative of order 1 < α < 2 and present a global consistency analysis under some reasonable regularity assumptions. The temporal nonuniform L2 formula is then utilized to develop a linearized difference scheme for a time-fractional Benjamin–Bona–Mahony-type equation. The unconditional convergence of our scheme on both uniform and nonuniform (graded) time meshes are proven with respect to the discrete H1-norm. Numerical examples are provided to justify the accuracy.  相似文献   

10.
A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation;we construct a finite difference scheme on a priori (se-quentially) adapted meshes and study its convergence.The scheme on a priori adapted meshes is constructed using a majorant function for the singular component of the discrete solution,which allows us to find a priori a subdomain where the computed solution requires a further improvement.This subdomain is defined by the perturbation parameterε,the step-size of a uniform mesh in x,and also by the required accuracy of the discrete solution and the prescribed number of refinement iterations K for im- proving the solution.To solve the discrete problems aimed at the improvement of the solution,we use uniform meshes on the subdomains.The error of the numerical so- lution depends weakly on the parameterε.The scheme converges almostε-uniformly, precisely,under the condition N~(-1)=o(ε~v),where N denotes the number of nodes in the spatial mesh,and the value v=v(K) can be chosen arbitrarily small for suitable K.  相似文献   

11.
The paper is concerned with strongly nonlinear singularly perturbed bound- ary value problems in one dimension.The problems are solved numerically by finite- difference schemes on special meshes which are dense in the boundary layers.The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed.For the central scheme,error estimates are derived in a discrete L~1 norm.They are of second order and decrease together with the perturbation parameterε.The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically.Numerical results showε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.  相似文献   

12.
In this paper, we propose three gradient recovery schemes of higher order for the linear interpolation. The first one is a weighted averaging method based on the gradients of the linear interpolation on the uniform mesh, the second is a geometric averaging method constructed from the gradients of two cubic interpolation on macro element, and the last one is a local least square method on the nodal patch with cubic polynomials. We prove that these schemes can approximate the gradient of the exact solution on the symmetry points with fourth order. In particular, for the uniform mesh, we show that these three schemes are the same on the considered points. The last scheme is more robust in general meshes. Consequently, we obtain the superconvergence results of the recovered gradient by using the aforementioned results and the supercloseness between the finite element solution and the linear interpolation of the exact solution. Finally, we provide several numerical experiments to illustrate the theoretical results.  相似文献   

13.
We consider a singularly perturbed one-dimensional reaction–diffusion problem with strong layers. The problem is discretized using a compact fourth order finite difference scheme. Altough the discretization is not inverse monotone we are able to establish its maximum-norm stability and to prove its pointwise convergence on a Shishkin mesh. The convergence is uniform with respect to the perturbation parameter. Numerical experiments complement our theoretical results.  相似文献   

14.
In the past decades, the finite difference methods for space fractional operators develop rapidly; to the best of our knowledge, all the existing finite difference schemes, including the first and high order ones, just work on uniform meshes. The nonlocal property of space fractional operator makes it difficult to design the finite difference scheme on non-uniform meshes. This paper provides a basic strategy to derive the first and high order discretization schemes on non-uniform meshes for fractional operators. And the obtained first and second schemes on non-uniform meshes are used to solve space fractional diffusion equations. The error estimates and stability analysis are detailedly performed; and extensive numerical experiments confirm the theoretical analysis or verify the convergence orders.  相似文献   

15.
In this work, we propose a hybrid difference scheme for solving parameterized singularly perturbed delay differential problems. A unified error analysis framework for the proposed hybrid scheme is given that allows to conclude uniform convergence of \(\mathcal {O}(N^{-2}\ln ^{2} N)\) on Shishkin meshes and \(\mathcal {O}(N^{-2})\) on Bakhvalov meshes, where N is the number of mesh intervals in the domain. Numerical results are included to confirm the theoretical estimates.  相似文献   

16.
This paper deals with the study on system of reaction diffusion differential equations for Robin or mixed type boundary value problems (MBVPs). A cubic spline approximation has been used to obtain the difference scheme for the system of MBVPs, on a piecewise uniform Shishkin mesh defined in the whole domain. It has been shown that our proposed scheme, i.e., central difference approximation for outer region with cubic spline approximation for inner region of boundary layers, leads to almost second order parameter uniform convergence whereas the standard method i.e., the forward-backward approximation for mixed boundary conditions with central difference approximation inside the domain leads to almost first order convergence on Shishkin mesh. Numerical results are provided to show the efficiency and accuracy of these methods.  相似文献   

17.
In this paper a computational technique is proposed for obtaining a higher order global solution and global normalized flux of singularly perturbed reaction-diffusion two-point boundary-value problems. The HOC (higher order compact) finite difference scheme developed in Gracia et al. (2001) [4] and which is constructed on an appropriate piecewise uniform Shishkin mesh, has been considered to find an almost fourth order convergent solution at mesh points. Using these values, piecewise cubic interpolants based approximations for solution and normalized flux in whole domain have been defined. It has been shown that the global solution and the global normalized flux are also uniformly convergent. Moreover, for the global solution, the order of uniform convergence in the whole domain is optimal, i.e., it is the same as this one obtained at mesh points, whereas, for the global normalized flux, the uniform convergence is almost third order, except at midpoints of the mesh, where it is also almost fourth order. Theoretical error bounds have been provided along with some numerical examples, which corroborate the efficiency of the proposed technique to find good approximations to the global solution and the global normalized flux.  相似文献   

18.
本文考察奇异摄动问题(1.1).在一特殊的非均匀网格上,将不稳定、二阶精度的中心差格式和稳定、一阶精度的Abrahamsson-Keller-Kreiss箱子格式相耦合,得到了一个二阶一致收敛的差分格式.最后给出了数值结果.  相似文献   

19.
In this paper, we propose a discrete duality finite volume (DDFV) scheme for the incompressible quasi‐Newtonian Stokes equation. The DDFV method is based on the use of discrete differential operators which satisfy some duality properties analogous to their continuous counterparts in a discrete sense. The DDFV method has a great ability to handle general geometries and meshes. In addition, every component of the velocity gradient can be reconstructed directly, which makes it suitable to deal with the nonlinear terms in the quasi‐Newtonian Stokes equation. We prove that the proposed DDFV scheme is uniquely solvable and of first‐order convergence in the discrete L2‐norms for the velocity, the strain rate tensor, and the pressure, respectively. Ample numerical tests are provided to highlight the performance of the proposed DDFV scheme and to validate the theoretical error analysis, in particular on locally refined nonconforming and polygonal meshes.  相似文献   

20.
We analyze the convergence of a continuous interior penalty (CIP) method for a singularly perturbed fourth‐order elliptic problem on a layer‐adapted mesh. On this anisotropic mesh, we prove under reasonable assumptions uniform convergence of almost order k ? 1 for finite elements of degree k ≥ 2. This result is of better order than the known robust result on standard meshes. A by‐product of our analysis is an analytic lower bound for the penalty of the symmetric CIP method. Finally, our convergence result is verified numerically. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 838–861, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号