首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electrooxidation of hydrochlorothiazide (HCT) at the surface of a benzoylferrocene modified multi-walled carbon nanotube paste electrode was studied using electrochemical approaches. Under the optimized conditions (pH 7.0), the square wave voltammetric peak current of HCT increased linearly with HCT concentration in the ranges of 6.0?×?10?7 to 3.0?×?10?4 M. The detection limit was 9.0?×?10?8 M HCT. The diffusion coefficient (D?=?1.75?×?10?5 cm2/s) and electron transfer coefficient (α?=?0.45) for HCT oxidation were also determined. The proposed sensor was successfully applied for the determination of HCT in human urine and tablet samples.  相似文献   

2.
An ionic liquid-modified carbon nanotubes paste electrode (IL/CNTPE) has been fabricated using hydrophilic ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) as a binder. This electrode showed enhanced electrochemical response and strong analytical activity towards the direct electrochemical oxidation of diclofenac (DCF). The electron transfer coefficient, α, and charge transfer resistance (R ct) of DCF at the modified electrode were calculated. Under optimal conditions at pH 7.0, the anodic peak currents increased linearly with the concentration of DCF in the range of 0.5–300 μmol L?1 with a detection limit of 0.2 μmol L?1 (3σ). The interferences of foreign substances were investigated. Differential pulse voltammetry was used to check the applicability of the proposed sensor to the determination of DCF in real samples with satisfactory results.  相似文献   

3.
This paper reports the selective and sensitive voltammetric determination of l-cysteine in the presence of folic acid using ethynylferrocene modified carbon nanotubes paste electrode in 0.1 M phosphate buffer solution (pH 7.0). Using square wave voltammetry, we could measure l-cysteine and folic acid in one mixture independently from each other by a potential difference of about 410 mV for the first time. Square wave voltammetric peak current of l-cysteine and folic acid increased linearly with their concentrations in the ranges of 0.2–250.0 and 1.0–500.0 μmol?L?1, respectively. The detection limits of 0.07 and 0.6 μmol?L?1 were achieved for l-cysteine and folic acid, respectively. The proposed voltammetric sensor was successfully applied to the determination of l-cysteine and folic acid in real samples.  相似文献   

4.
Arabali  Vahid  Karimi-Maleh  Hassan  Beitollahi  Hadi  Moradi  Reza  Ebrahimi  Mahmoud  Ahmar  Hamid 《Ionics》2015,21(4):1153-1161
Ionics - In this study, a carbon paste electrode (CPE) was chemically modified with Pt/carbon nanotubes (CNTs) nanocomposite and 8,9-dihydroxy-7-methyl-12H-benzothiazolo [2,3-b] quinazolin-12-one...  相似文献   

5.
In the present paper, the use of a carbon paste electrode modified with 1-(4-(1, 3-dithiolan-2-yl)-6, 7-dihydroxy-2-methyl-6, 7-dihydrobenzofuran-3-yl)ethanone (DDE) and TiO2 nanoparticles prepared by a simple and rapid method was described. The modified electrode showed excellent properties for electrocatalytic oxidization of epinephrine (EP), acetaminophen (AC) and folic acid (FA). The apparent charge transfer rate constant, k s?=?1.14 s?1, and transfer coefficient, α?=?0.54, for electron transfer between the modifier and carbon paste electrode were calculated. It has been found that under optimum condition (pH?=?7.0) in cyclic voltammetry, the oxidation of EP occurs at a potential about 280 mV less positive than that of an unmodified carbon paste electrode. The values of transfer coefficients (α?=?0.46), catalytic rate constant (k?=?1.2?×?104 M?1 s?1) and diffusion coefficient (D?=?2.70?×?10?5 cm2 s?1) were calculated for EP. Differential pulse voltammetry (DPV) exhibited two linear dynamic ranges of 0.5 to 50.0 μM and 50.0 to 1,000 μM for EP. This modified electrode is quite effective not only for the detection of EP, AC and FA but also for the simultaneous determination of these species in a mixture. The limit of detection for EP, AC and FA is 0.10, 1.80 and 2.36 μM, respectively.  相似文献   

6.
Ionics - A simple and rapid method was employed for the modification of carbon paste electrode with iron nanoparticle-decorated multiwalled carbon nanotubes (MCPE/Fe-MWCNTs). The synergistic effect...  相似文献   

7.
In this study, we describe an ionic liquid–MgO nanoparticle modified carbon paste electrode (MgO/NPs/IL/CPE) was used as a simple, fast, and sensitive tool for the investigation of the electrochemical oxidation of methyldopa (MDOP) using voltammetric methods. The MgO/NPs was characterized with different methods such as TEM, SEM, and XRD. The oxidation peak potential of the MDOP at a surface of MgO/NPs/IL/CPE appeared at 450 mV that was about 100 mV lower than the oxidation peak potential at the surface of the traditional carbon paste electrode (CPE) under similar conditions. The electro-oxidation of MDOP occurred in a pH-dependent 2e? and 2H+ process, and the electrode reaction followed a diffusion-controlled pathway. Under optimal conditions at pH 7.0, the anodic peak currents increased linearly with the concentration of MDOP in the range of 0.08–380 μmol L?1 with a detection limit of 0.03 μmol L?1 (3σ). The proposed sensor was successfully applied to the determination of MDOP in real samples such as drug and urine.  相似文献   

8.
A simple and sensitive spectrophotometric method has been developed for the determination of sparfloxacin in bulk and pharmaceutical formulations, and in artificial urine. Sparfloxacin was oxidized into a red colored product using ammonium monovanadate in acidic media. The proposed method was successfully applied to the determination of sparfloxacin in different pharmaceutical formulations (tablets) and in a spiked urine sample. The influence of commonly used excipients on the determination of sparfloxacin was studied. Percentage recoveries in the range of 98.0 ± 0.14 % to 100.0 ± 0.20 % were obtained. The observed data have been evaluated statistically which showed high accuracy and precision.  相似文献   

9.
Ionic liquid/multiwall carbon nanotubes paste electrode has been used as a novel sensor for the efficient quantitative determination of methyldopa (MDOP) in pharmaceutical and biological samples by using square wave voltammetry. This new sensor shows a better electrochemical response with lower over-potential and high sensitivity for MDOP compared with unmodified carbon paste electrode in physiological condition. The electro-oxidation of MDOP occurred in a pH-dependent 2e? and 2H+ process, and the electrode reaction followed a diffusion-controlled pathway. Under the optimum conditions, the voltammetric oxidation peak current of MDOP showed two linear dynamic ranges with a detection limit of 0.1 μM for MDOP. The novel sensor has been found selective and successfully implemented for the determination of MDOP in real samples such as tablet and patient urine.  相似文献   

10.
Ionics - A novel carbon paste electrode (CPE) modified with 2,2′-[1,7–heptanediylbis(nitrilomethylidene)]-bis(4-hydroxyphenol) (DHB) and carbon nanotubes (CNTs) was prepared. At first,...  相似文献   

11.
A carbon paste electrode modified with benzoylferrocene (BF) and carbon nanotubes (CNTs) have been applied to the electrocatalytic oxidation of homocysteine which reduced the overpotential by about 165 mV with an obvious increase in the current response. The transfer coefficient (α) for the electrocatalytic oxidation of homocysteine and diffusion coefficient of this substance under the experimental conditions were also investigated. In a phosphate buffer solution (PBS) of pH 7.0, the oxidation current increased linearly with two concentration intervals of homocysteine; one is 0.1 to 10.0 μM, and the other is 10.0 to 80.0 μM. The detection limit (3σ) obtained by square wave voltammetry (SWV) was 50.0 nM. The proposed method was successfully applied to the determination of homocysteine in real samples.  相似文献   

12.
The direct electrochemistry of morphine on modified multiwall carbon nanotubes using carbon ionic liquid (i.e., 1-butyl-3-methylimidazolium hexafluoro phosphate, ([C4mim]–[PF6])) was studied. It was found that the electrode showed sensitive voltammetric response to morphine. The experimental results suggested that the modified electrode promoted electron transfer reaction for the oxidation of morphine. The electron transfer coefficient and charge transfer resistant (R ct) of morphine at the modified electrode were calculated. Under the optimized conditions at pH 8.0, the peak current was linear to morphine concentrations over the concentration range of 0.45–450 μmol L−1, using differential pulse voltammetry. The detection limit was 0.14 μmol L−1. The proposed method was successfully applied to the determination of morphine in both ampoules and urine samples.  相似文献   

13.
Afkhami  Abbas  Kafrashi  Fatemeh  Madrakian  Tayyebeh 《Ionics》2015,21(10):2937-2947
Ionics - This work report on electrodeposition of polyglycine microparticles onto zinc oxide (ZnO) nanoparticles/multi-walled carbon nanotube-modified carbon paste electrode surface in order to...  相似文献   

14.
This paper presents a sensitive electrochemical method for the determination of cysteamine (CA) using promazine hydrochloride-modified multi-wall carbon nanotubes carbon paste electrode (PrH/MWCNTs CPE). Because of the good electrochemical activity of MWCNTs and the acceptable performance of promazine hydrochloride (PrH) as an electrocatalytic mediator, the modified electrode significantly enhanced the sensitivity for the detection of CA in comparison to the bare carbon paste electrode (CPE). All chemical parameters such as pH of solution, concentration of PrH and kinetic parameters of the system were investigated. Linear sweep voltammetric (LSV) method was used to follow the electrocatalytic effect of CA on the current–potential response of PrH. Under optimum conditions, the obtained net peak current ?I p(I sample???I blank) was linear with CA concentrations in two dynamic ranges of 2.0–346.5 μmol l?1 (?I p?=?(0.0195?±?0.0043)C CA?+?(0.7648?±?0.0397) (r 2?=?0.9948)) and 346.5–1,912.5 μmol l?1 (?I p?=?(0.0100?±?0.0026)C CA?+?(3.8981?±?0.0828) (r 2?=?0.9911)) with a detection limit of 0.8 μmol l?1. Finally, the PrH/MWCNTs CPE was successfully applied for the determination of CA in urine and drug samples with satisfactory results.  相似文献   

15.
This paper introduces a carbon paste electrode modified with ferrocene and carbon nanotubes as a voltammetric sensor for determination of sulfite at pH 7.0. The results showed that under the optimum condition (pH 7.0) in cyclic voltammetry, the oxidation of sulfite occurred at a potential about 280?mV less positive than the unmodified carbon paste electrode. Kinetic parameters such as electron transfer coefficient (??) and heterogeneous rate constant (k) for sulfite were also determined using electrochemical approaches. Under the optimized conditions, the electrocatalytic oxidation peak current of sulfite showed two linear dynamic ranges with a detection limit of 0.1???M for sulfite. The proposed method was examined as a selective, simple, and precise method for voltammetric determination of sulfite in some real samples such as weak liquor from wood and paper industry, boiler water, river water, industrial water, and tap water.  相似文献   

16.
The electrochemical behavior of Hg2+ was investigated in poly(Eriochrome Black T)-modified carbon paste electrode (CPE) using cyclic voltammetry (CV). Poly(Eriochrome Black T) was prepared in an alkaline medium on the surface of the CPE using a solution of Eriochrome Black T with the CV technique. The electrochemical impedance study revealed a better charge transfer kinetics at the modified electrode. The effects of variation of the experimental conditions, such as the concentration of electrolytes, pH, deposition time, and the deposition potential, which maximize current efficiency were studied. The optimum response of Hg2+ was observed in 1.0 M KCl solution. The differential pulse anodic stripping voltammetric technique was employed successfully to detect Hg2+, which gave a good linear response at low concentration levels of Hg2+. The detection limit was found to be 2.2?×?10?10 M (S/N?=?3), which is comparable with that achieved in multiwall carbon nanotube-modified electrode. The remarkable electroanalytical performance of the modified electrode makes it amenable to employ it successfully as an electrochemical sensor for the determination of hazardous pollutant Hg2+ in environmental samples.  相似文献   

17.
A novel biosensor has been constructed by incorporating modified nanosized natural zeolite and 3-hydroxypropanaminium acetate (HPAA) as a novel room temperature ionic liquid, supported on multiwalled carbon nanotube (MWCNTs) and employed for the simultaneous determination of dopamine (DA) and uric acid (UA). A detailed investigation by transmission electron microscopy and electrochemistry is performed in order to elucidate the preparation process and properties of the composites. The voltammetric studies using the modified carbon paste electrode show two well-resolved anodic peaks for DA and UA with a potential difference of 160 mV, revealing the possibility of the simultaneous electrochemical detection of these compounds. The modified carbon paste electrode shows good conductivity, stability, and extraction effect due to the synergic action of HPAA, MWCNTs, and iron ion-doped natrolite zeolite. Under optimized conditions, the peak currents are linear from 8.12?×?10?7 to 3.01?×?10?4?mol?L?1 and from 9.31?×?10?7 to 3.36?×?10?4?mol?L?1 with detection limits of 1.16?×?10?7 and 1.33?×?10?7?mol?L?1 for DA and UA using the differential pulse voltammetric method, respectively. Finally, the modified carbon paste electrode proved to have good sensitivity and stability and is successfully applied for the simultaneous determination of DA and UA in human blood serum and urine samples.  相似文献   

18.
A novel carbon paste electrode modified with carbon nanotubes and 5-amino-2′-ethyl -biphenyl-2-ol was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for electrocatalytic oxidation of ascorbic acid (AA), is described. The electrode was employed to study the electrocatalytic oxidation of AA, using cyclic voltammetry, chronoamperometry, and square-wave voltammetry (SWV) as diagnostic techniques. It has been found that the oxidation of AA at the surface of modified electrode occurs at a potential of about 250 mV less positive than that of an unmodified carbon paste electrode. SWV exhibits a linear dynamic range from 2.0?×?10?7 to 5.0?×?10?4 M and a detection limit of 1.0?×?10?7 M for AA. In addition, this modified electrode was used for simultaneous determination of AA, acetaminophen (AC), and tryptophan (TRP). Finally, the modified electrode was used for determination of AA, AC, and TRP in pharmaceutical products.  相似文献   

19.
A chitosan/ionic liquid composite electrode was prepared and used to determine uric acid (UA) in the presence of a large excess of ascorbic acid (AA) and dopamine (DA) by linear sweep voltammetry (LSV). The modified electrode shows large peak separations between DA, AA, and UA. Due to the existence of chitosan and ionic liquid in the composite, the modified electrode exhibits strong electrochemical catalytic activity toward the oxidation of UA. Under optimal conditions, the peak current is linearly dependent on the UA concentration in the range of 5?×?10?7–2?×?10?4 M in the presence of 5?×?10?4 M AA and 5?×?10?5 M DA with a correlation coefficient of 0.9978, and the detection limit is 5?×?10?8 M at a signal-to-noise ratio of 3. With good sensitivity and stability, the constructed sensor was applied in the determination of UA in human serum samples and satisfactory results were obtained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号