首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this work atomic layer deposition of Al2O3 and TiO2 has been used to obtain dielectric stacks for passivation of silicon surfaces. Our experiments on n‐ and p‐type silicon wafers deposited by thin Al2O3/TiO2 stacks show that a considerably improved passivation is obtained compared to the Al2O3 single layer. For Al2O3 films thinner than 20 nm the emitter saturation current density decreases with increasing TiO2 thickness. Especially the passivation of ultrathin (~5 nm) Al2O3 is very effectively enhanced by TiO2 due to a decreased interface defect density as well as an increased fixed negative charge in the stacks. Hence, the thin Al2O3/TiO2 stacks developed in this work can be used as a passivation coating for Si‐based solar cells. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The distribution of the phase and chemical composition at an Al2O3/Si interface is studied by depth-resolved ultrasoft x-ray emission spectroscopy. The interface is formed by atomic layer deposition of Al2O3 films of various thicknesses (from several to several nanometers to several hundreds of nanometers) on the Si(100) surface (c-Si) or on a 50-nm-thick SiO2 buffer layer on Si. L 2,3 bands of Al and Si are used for analysis. It is found that the properties of coatings and Al2O3/Si interfaces substantially depend on the thickness of the Al2O3 layer, which is explained by the complicated character of the process kinetics. At a small thickness of coatings (up to 10–30 nm), the Al2O3 layer contains inclusions of oxidized Si atoms, whose concentration increases as the interface is approached. As the thickness increases, a layer containing inclusions of metallic Al clusters forms. A thin interlayer of Si atoms occurring in an unconventional chemical state is found. When the SiO2 buffer layer is used (Al2O3/SiO2/Si), the structure of the interface and the coating becomes more perfect. The Al2O3 layer does not contain inclusions of metallic aluminum, does not vary with the sample thickness, and has a distinguished boundary with silicon.  相似文献   

3.
This paper investigates the optical and electrical properties of nanostructured implanted silicon junctions passivated by Al2O3 layers. A two-step ion implantation method has been developed to fabricate the nanostructured n+-p junctions with theoretical support of two dimensional Monte Carlo simulations to predict and optimize the junction profile. Dense and uniform arrays of silicon nanopillars and nanocones were formed by combining nanosphere lithography and dry etching, exhibiting a low reflectance in a broad spectrum from 300 to 800 nm. A conformal Al2O3 layer was deposited on the array by using thermal atomic layer deposition (ALD) to achieve chemical passivation effect. External quantum efficiency and power conversion efficiency of the junctions were measured versus nanostructuration and Al2O3 passivation. The results showed that significant enhancement of efficiency can be achieved on the passivated nanopillar-based junctions.  相似文献   

4.
原子层沉积氧化铝已经成为应用于钝化发射极和背面点接触(PERC)型晶硅太阳能电池优异的钝化材料.对于基于丝网印刷技术的太阳能电池,钝化材料的钝化效果及其热稳定性是非常重要的.本文在太阳能级硅片上用热原子层沉积设备制备了20nm和30nm的氧化铝,少子寿命测试结果显示初始沉积的氧化铝薄膜具有一定的钝化效果,在退火后可达到100μs以上,相当于硅表面复合速度小于100cm/s.经过制备传统晶硅太阳能电池的烧结炉后,少子寿命能够保持在烧结前的一半以上,可应用于工业PERC型电池的制备.通过电子显微镜观察到了较厚的氧化铝薄膜有气泡,解释了30nm氧化铝比20nm氧化铝钝化性能和稳定性更差的异常表现.  相似文献   

5.
闫大为  李丽莎  焦晋平  黄红娟  任舰  顾晓峰 《物理学报》2013,62(19):197203-197203
利用原子层沉积技术制备了具有圆形透明电 极的Ni/Au/Al2O3/n-GaN金属-氧化物-半导体结构, 研究了紫外光照对样品电容特性及深能级界面态的影响, 分析了非理想样品积累区电容随偏压增加而下降的物理起源. 在无光照情形下, 由于极长的电子发射时间与极慢的少数载流子热产生速率, 样品的室温电容-电压扫描曲线表现出典型的深耗尽行为, 且准费米能级之上占据深能级界面态的电子状态保持不变. 当器件受紫外光照射时, 半导体耗尽层内的光生空穴将复合准费米能级之上的深能级界面态电子, 同时还将与氧化层内部的深能级施主态反应. 非理想样品积累区电容的下降可归因于绝缘层漏电导的急剧增大, 其诱发机理可能是与氧化层内的缺陷态及界面质量有关的“charge-to-breakdown”过程. 关键词: 原子层沉积 2O3/n-GaN')" href="#">Al2O3/n-GaN 金属-氧化物-半导体结构 电容特性  相似文献   

6.
High-temperature annealing of the atomic layer deposition (ALD) of Al2O3 films on 4H-SiC in O 2 atmosphere is studied with temperature ranging from 800℃ to 1000℃. It is observed that the surface morphology of Al2O3 films annealed at 800℃ and 900℃ is pretty good, while the surface of the sample annealed at 1000℃ becomes bumpy. Grazing incidence X-ray diffraction (GIXRD) measurements demonstrate that the as-grown films are amorphous and begin to crystallize at 900℃. Furthermore, C-V measurements exhibit improved interface characterization after annealing, especially for samples annealed at 900℃ and 1000℃. It is indicated that high-temperature annealing in O2 atmosphere can improve the interface of Al2O3 /SiC and annealing at 900℃ would be an optimum condition for surface morphology, dielectric quality, and interface states.  相似文献   

7.
《Current Applied Physics》2014,14(4):552-557
We report the permeation barrier properties of Al2O3/ZrO2 multi-layers deposited by remote plasma atomic layer deposition. Electrical Ca degradation tests were performed to derive the water vapor transmission rate (WVTR) of Al2O3, ZrO2 and Al2O3/ZrO2 multi-layers at 50 °C and 50% relative humidity (RH). Al2O3/ZrO2 multi-layers exhibit better barrier properties than Al2O3 and ZrO2 layers, and when more individual layers were deposited in the same total thickness, the WVTR value was reduced further, indicating a better barrier property. The WVTR of the Al2O3 and ZrO2 layers were 9.5 × 10−3 and 1.6 × 10−2 g/m2 day, respectively, but when deposited alternatively with 1 cycle of each layer, the WVTR decreased to 9.9 × 10−4 g/m2 day. X-ray diffraction results indicated that ZrO2 has a monoclinic structure but Al2O3 and Al2O3/ZrO2 multi-layers show an amorphous structure. Cross sectional Al2O3/ZrO2 multi-layer structures and the formation of a ZrAlxOy phase are observed by transmission electron microscopy (TEM). X-ray photoelectron spectrometry (XPS) results indicate that Al2O3 and ZrO2 contain 33.7% and 37.8%, respectively, Al–OH and Zr–OH bonding. However, the ZrAlxOy phase contained 30.5% Al–OH and Zr–OH bonding. The results of transmittance measurement indicate that overall, Al2O3, ZrO2 and Al2O3/ZrO2 multi-layers show high transmittance greater than 80% in the visible region.  相似文献   

8.
It is demonstrated that the application of an ultrathin aluminum oxide (Al2O3) capping film can improve the level of silicon surface passivation obtained by low‐temperature synthesized SiO2 profoundly. For such stacks, a very high level of surface passivation was achieved after annealing, with Seff < 2 cm/s for 3.5 Ω cm n‐type c‐Si. This can be attributed primarily to a low interface defect density (Dit < 1011 eV–1 cm–2). Consequently, the Al2O3 capping layer induced a high level of chemical passivation at the Si/SiO2 interface. Moreover, the stacks showed an exceptional stability during high‐temperature firing processes and therefore provide a low temperature (≤400 °C) alternative to thermally‐grown SiO2. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
<正>Polymer-assisted deposition technique has been used to deposit Al2O3 and N-doped Al2O3(AlON) thin films on Si(100) substrates.The chemical compositions,crystallinity,and thermal conductivity of the as-grown films have been characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),and 3-omega method,respectively. Amorphous and polycrystalline Al2O3 and AlON thin films have been formed at 700℃and 1000℃.The thermal conductivity results indicated that the effect of nitrogen doping on the thermal conductivity is determined by the competition of the increase of Al-N bonding and the suppression of crystallinity.A 67%enhancement in thermal conductivity has been achieved for the samples grown at 700℃,demonstrating that the nitrogen doping is an effective way to improve the thermal performance of polymer-assisted-deposited Al2O3 thin films at a relatively low growth temperature.  相似文献   

10.
We measure surface recombination velocities (SRVs) below 10 cm/s on p‐type crystalline silicon wafers passivated by atomic–layer–deposited (ALD) aluminium oxide (Al2O3) films of thickness ≥10 nm. For films thinner than 10 nm the SRV increases with decreasing Al2O3 thickness. For ultrathin Al2O3 layers of 3.6 nm we still attain a SRV < 22 cm/s on 1.5 Ω cm p‐Si and an exceptionally low SRV of 1.8 cm/s on high‐resistivity (200 Ω cm) p‐Si. Ultrathin Al2O3 films are particularly relevant for the implementation into solar cells, as the deposition rate of the ALD process is extremely low compared to the frequently used plasma‐enhanced chemical vapour deposition of silicon nitride (SiNx). Our experiments on silicon wafers passivated with stacks composed of ultrathin Al2O3 and SiNx show that a substantially improved thermal stability during high‐temperature firing at 830 °C is obtained for the Al2O3/SiNx stacks compared to the single‐layer Al2O3 passivation. Al2O3/SiNx stacks are hence ideally suited for the implementation into industrial‐type silicon solar cells where the metal contacts are made by screen‐printing and high‐temperature firing of metal pastes. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The effect of poly-Si thickness on silicidation of Ni film was investigated by using X-ray diffraction, auger electron spectroscopy, cross-sectional scanning transmission electron microscopy, resistivity, IV, and CV measurements. The poly-Si films with various thickness of 30–200 nm were deposited by LPCVD on thermally grown 50 nm thick SiO2, followed by deposition of Ni film right after removing the native oxide. The Ni film was prepared by using atomic layer deposition with a N2-hydroxyhexafluoroisopropyl-N1 (Bis-Ni) precursor. Rapid thermal process was then applied for a formation of fully silicide (FUSI) gate at temperature of 500 °C in N2 ambient during 30 s. The resultant phase of Ni-silicide was strongly dependent on the thickness of poly-Si layer, continuously changing its phase from Ni-rich (Ni3Si2) to Si-rich (NiSi2) with increasing the thickness of the poly-Si layer, which is believed to be responsible for the observed flat band voltage shift, ΔVFB, in CV curves.  相似文献   

12.
13.
14.
Nb2O5 and Nb doped Al2O3 have proved to be good candidates as resistive switch materials or optical materials. In this letter, we focus on the complex electronic structure and optical properties of Nb doped Al2O3 to give chemical physical images of the films. With the help of SE, XPS and XPS valence band spectra, the detailed electronic structure with atomic bonding structure and optical properties are given. The band gap of a thin oxide film is determined to be 5.05 eV, and the evolution of VBO and CBO of the film on Si are also discussed.  相似文献   

15.
采用原子层沉积技术在熔石英和BK7玻璃基片上镀制了TiO2/Al2O3薄膜,沉积温度分别为110℃和280℃。利用X射线粉末衍射仪对膜层微观结构进行了分析研究,并在激光损伤平台上进行了抗激光损伤阈值测量。采用Nomarski微分干涉差显微镜和原子力显微镜对激光损伤后的形貌进行了观察分析。结果表明,采用原子层沉积技术镀制的TiO2/Al2O3增透膜的厚度均匀性较好,Φ50 mm样品的膜层厚度均匀性优于99%;光谱增透效果显著,在1 064 nm处的透过率〉99.8%;在熔石英和BK7基片上,TiO2/Al2O3薄膜在110℃时的激光损伤阈值分别为(6.73±0.47)J/cm2和(6.5±0.46)J/cm2,明显高于在280℃时的损伤阈值。  相似文献   

16.
The behavior of Al2O3/Al composite coated Al electrodes fabricated by surface mechanical alloying ‘SMA’ was studied. The work was accomplished using Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques in alkaline media 2MKOH were done at room temperature. Results show hydroxyl ions accumulate on the surface due to Al deformation micro cavities filling with Al2O3 until full charge blockage reached. A barrier cover layer development causing an increase of both resistance and capacitance as it becomes more stable and thinner with exposure time increase. Migrating hydroxyl ion inside micro cavity changed its composition from Al2O3 to stable tetrahedral Al(OH)4? aluminate ions. Therefore future benefits could be reached by developing such surfaces having charge accumulation that enables environmental interaction.  相似文献   

17.
Silicon solar cells passivated with Al2O3 require a capping layer that protects the passivation layer from humidity because of sensitivity of Al2O3 to moisture. Al2O3/TiO2 stacks obtained by atomic layer deposition have been known to provide a high level of passivation layers because of their excellent field‐effect passivation. In this work, degradation of this Al2O3/TiO2 stack, when exposed to humidity, is examined, and an attempt is made for a humidity‐resistant encapsulation layer by adding Al2O3/TiO2 nanolaminates that can be deposited in‐situ without breaking vacuum. Placing the nanolaminate on top of the TiO2 and Al2O3 stack is found to lead to almost no degradation even after 10 days of humidity exposure. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

18.
We investigate the effect of O3 and H2O oxidant pre‐pulse prior to Al2O3 atomic layer deposition for Si surface passivation. Interfacial oxide SiOx formed by the O3 pre‐pulse is more beneficial than that by H2O to a high level of surface passivation. The passivation of thinner H2O–Al2O3 films is more improved by this O3 pre‐pulse. O3 pre‐pulse for 10 nm H2O–Al2O3 reduces saturation current density in boron emitter to 18 fA cm–2 by a factor of 1.7. Capacitance–voltage measurements reveal this interfacial oxide plays a role of decreasing interface trap density without detrimental effect to negative charge density of Al2O3. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

19.
Growth and interfacial properties of atomic layer deposited Al0.7Ti0.3O y on Ge have been investigated as a potential high-k gate dielectric for future Ge-based metal oxide semiconductor devices. A sandwich structure of Al2O3/TiO2 stack is proposed for Al2O3/TiO2 intermixing and high-k/Ge interfacial passivation. The film thicknesses and interface microstructure are characterized by spectroscopy ellipsometry and high-resolution transmission electron microscopy. X-ray photoelectron spectrometry is used to analyze the chemical composition and bonding states, and to reveal the band alignment of high-k/Ge heterojunctions. Metal-oxide-capacitors are formed by depositing aluminum electrodes to perform capacitance–voltage measurements for electrical characteristics. All evidences show a positive prospect of employing atomic layer deposited Al0.7Ti0.3O y as high-k gate dielectric for future Ge-based devices.  相似文献   

20.
Thin aluminum oxide layers deposited on silicon by thermal atomic layer deposition can be used to reduce the electronic recombination losses by passivating the silicon surfaces. To activate the full passivation ability of such layers, a post-deposition annealing step at moderate temperatures (≈400 °C, duration≈30 min) is required. Such an annealing step is commonly done in an oven in air, nitrogen, or forming gas atmosphere. In this work, we investigate the ability to reduce the duration of the annealing step by heating the silicon wafer with a microwave source. The annealing time is significantly reduced to durations below 1 min while achieving effective minority carrier lifetimes similar or higher to that of conventionally oven-annealed samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号