首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The influence of silicalite-1 pores on the reaction equilibria and the selectivity of the propene metathesis reaction system in the temperature range between 300 and 600 K and the pressure range from 0.5 to 7 bars has been investigated with molecular simulations. The reactive Monte Carlo (RxMC) technique was applied for bulk-phase simulations in the isobaric-isothermal ensemble and for two phase systems in the Gibbs ensemble. Additionally, Monte Carlo simulations in the grand-canonical ensemble (GCMC) have been carried out with and without using the RxMC technique. The various simulation procedures were combined with the configurational-bias Monte Carlo approach. It was found that the GCMC simulations are superior to the Gibbs ensemble simulations for reactions where the bulk-phase equilibrium can be calculated in advance and does not have to be simulated simultaneously with the molecules inside the pore. The confined environment can increase the conversion significantly. A large change in selectivity between the bulk phase and the pore phase is observed. Pressure and temperature have strong influences on both conversion and selectivity. At low pressure and temperature both conversion and selectivity have the highest values. The effect of confinement decreases as the temperature increases.  相似文献   

2.
We present a molecular-level simulation study of the effects of confinement on chemical reaction equilibrium in nanoporous materials. We use the reaction ensemble Monte Carlo (RxMC) method to investigate the effects of temperature, nanopore size, bulk pressure, and capillary condensation on the nitric oxide dimerization reaction in a model carbon slit nanopore in equilibrium with a bulk reservoir. In addition to the RxMC simulations, we also utilize the molecular-dynamics method to determine self-diffusion coefficients for confined nonreactive mixtures of nitric oxide monomers and dimers at compositions obtained from the RxMC simulations. We analyze the effects of the temperature, nanopore width, bulk pressure, and capillary condensation on the reaction equilibrium with respect to the reaction conversion, fluid structure, and self-diffusion coefficients. We show that the influence of the temperature, nanopore size, and capillary condensation on the confined reaction equilibrium is quite dramatic while the effect of the bulk pressure on the reaction equilibrium in the carbon slit nanopore is only moderate. This work is an extension of previous work by Turner et al. [J. Chem. Phys. 114, 1851 (2001)] on the confined reactive nitric oxide system.  相似文献   

3.
Monte Carlo simulations are used to trace the critical loci for a number of binary mixtures. In particular, we use grand canonical Monte Carlo (GCMC) simulations with histogram reweighting and mixed-field finite-size scaling to determine the mixture critical lines. Two different classes of criticality are investigated. A mixture of methane and ethane displays type I criticality, exhibiting continuous mixing between the two species across the entire composition range. A methane-water mixture shows type IIIb criticality, with a discontinuity in the critical locus. Quantitative agreement is found between simulation and experimental critical loci for the methane-ethane system using no adjustable parameters for interactions in the mixture. For the water-methane system, we investigate the effect of the combining rules for the intermolecular interaction between the two species on the mixture critical locus. We also investigate several potentials for methane: a nonpolar exponential-6, an octopolar fixed partial charge, and a polarizable fluctuating charge model. Qualitative agreement between simulations and experiments is found for all potentials, but none are able to quantitatively capture the abrupt increase in the critical temperature as methane is added to the system.  相似文献   

4.
5.
Using grand canonical Monte Carlo (GCMC) simulations of molecular models, we investigate the nature of water adsorption and desorption in slit pores with graphitelike surfaces. Special emphasis is placed on the question of whether water exhibits capillary condensation (i.e., condensation when the external pressure is below the bulk vapor pressure). Three models of water have been considered. These are the SPC and SPC/E models and a model where the hydrogen bonding is described by tetrahedrally coordinated square-well association sites. The water-carbon interaction was described by the Steele 10-4-3 potential. In addition to determining adsorption/desorption isotherms, we also locate the states where vapor-liquid equilibrium occurs for both the bulk and confined states of the models. We find that for wider pores (widths >1 nm), condensation does not occur in the GCMC simulations until the pressure is higher than the bulk vapor pressure, P0. This is consistent with a physical picture where a lack of hydrogen bonding with the graphite surface destabilizes dense water phases relative to the bulk. For narrow pores where the slit width is comparable to the molecular diameter, strong dispersion interactions with both carbon surfaces can stabilize dense water phases relative to the bulk so that pore condensation can occur for P < P0 in some cases. For the narrowest pores studied--a pore width of 0.6 nm--pore condensation is again shifted to P > P0. The phase-equilibrium calculations indicate vapor-liquid coexistence in the slit pores for P < P0 for all but the narrowest pores. We discuss the implications of our results for interpreting water adsorption/desorption isotherms in porous carbons.  相似文献   

6.
Grand canonical transition matrix Monte Carlo simulations are used to investigate the phase behavior of the model argon on solid carbon dioxide system introduced by Ebner and Saam (Phys. Rev. Lett. 1977, 38, 1486). Our results indicate that the system exhibits first-order prewetting transitions at temperatures above a wetting temperature of Tw = 0.598(5) and below a critical prewetting temperature of Tpwc approximately 0.92. The wetting transition is identified by determining the temperature at which the difference between the bulk vapor-liquid and prewetting saturation chemical potentials goes to zero. Coexistence is directly located at a given temperature by obtaining a density probability distribution from simulation data and utilizing histogram reweighting to determine the conditions that satisfy phase coexistence. Structural properties of the adsorbed films are also examined.  相似文献   

7.
Stockmayer流体在活性炭孔中的吸附的分子模拟   总被引:1,自引:0,他引:1  
金文正  汪文川 《化学学报》2000,58(6):622-626
应用巨正则系综monteCarlo方法模拟Stockmayer流体[以一氯二氟甲烷(R22)为代表]在活性炭孔中的吸附。模拟中R22分子采用等效Stockmayer势能模型,狭缝碳孔墙采用10-4-3模型。通过模拟得到了最佳孔径,并在最佳孔径下,针对不同的主体压力及活性基团密度,得到了吸附等温线、孔中流体的局部密度分布图和较为直观的孔内流体分子的瞬时构象,分析了吸附等温线的特征及孔内流体的吸附结构,认为在0.0,1.0sites/nm^2的活性基团密度下的碳孔内分别发生物理及化学吸附,并确定了最佳操作压力,为工业设计合适的催化剂提供依据。  相似文献   

8.
The multiple histogram reweighting method takes advantage of calculating ensemble averages over a range of thermodynamic conditions without performing a molecular simulation at each thermodynamic point. We show that this method can easily be extended to the calculation of the surface tension. We develop a new methodology called multiple histogram reweighting with slab decomposition based on the decomposition of the system into slabs along the direction normal to the interface. The surface tension is then calculated from local values of the chemical potential and of the configurational energy using Monte Carlo (MC) simulations. We show that this methodology gives surface tension values in excellent agreement with experiments and with standard NVT MC simulations in the case of the liquid-vapor interface of carbon dioxide.  相似文献   

9.
Coexistence properties for water near the critical point using several ab initio models were calculated using grand canonical Monte Carlo simulations with multiple histogram reweighting techniques. These models, that have proved to yield a good reproduction of the water properties at ambient conditions, perform rather well, improving the performance of a previous ab initio model. It is also shown that bulk geometry and dipole values, predicted by the simulation, can be used and a good approximation obtained with a polarizable rigid water model but not when polarization is excluded.  相似文献   

10.
The effect of confinement on phase behavior of simple fluids is still an area of intensive research. In between experiment and theory, molecular simulation is a powerful tool to study the effect of confinement in realistic porous materials, containing some disorder. Previous simulation works aiming at establishing the phase diagram of a confined Lennard-Jones-type fluid, concentrated on simple pore geometries (slits or cylinders). The development of the Gibbs ensemble Monte Carlo technique by Panagiotopoulos [Mol. Phys. 61, 813 (1987)], greatly favored the study of such simple geometries for two reasons. First, the technique is very efficient to calculate the phase diagram, since each run (at a given temperature) converges directly to an equilibrium between a gaslike and a liquidlike phase. Second, due to volume exchange procedure between the two phases, at least one invariant direction of space is required for applicability of this method, which is the case for slits or cylinders. Generally, the introduction of some disorder in such simple pores breaks the initial invariance in one of the space directions and prevents to work in the Gibbs ensemble. The simulation techniques for such disordered systems are numerous (grand canonical Monte Carlo, molecular dynamics, histogram reweighting, N-P-T+test method, Gibbs-Duhem integration procedure, etc.). However, the Gibbs ensemble technique, which gives directly the coexistence between phases, was never generalized to such systems. In this work, we focus on two weakly disordered pores for which a modified Gibbs ensemble Monte Carlo technique can be applied. One of the pores is geometrically undulated, whereas the second is cylindrical but presents a chemical variation which gives rise to a modulation of the wall potential. In the first case almost no change in the phase diagram is observed, whereas in the second strong modifications are reported.  相似文献   

11.
Summary: Monte Carlo computer simulations have been performed for model polymers confined in slits of thickness comparable to the transverse diameter of the chains. The density of polymer within the slits is allowed to vary with the slit thickness in such a way that the content of the slits is always in equilibrium with a large reservoir of bulk polymer. The calculations reveal the presence of polymer‐mediated attractive or repulsive interactions between the slit plates, oscillating with the slit thickness in good agreement with experimental results.

The base cell used in the simulations.  相似文献   


12.
We have analyzed various phenomena that occur in nanopores, focusing on elucidating their key mechanisms, to advance the effective engineering use of nanoporous materials. As ideal experimental systems, molecular simulations can effectively provide information at the molecular level that leads to mechanistic insight. In this short review, several of our recent results are presented. The first topic is the critical point depression of Lennard-Jones fluid in silica slit pores due to finite size effects, studied by our original Monte Carlo (MC) technique. We demonstrate that the first layers of adsorbed molecules in contact with the pore walls act as a “fluid wall” and impose extra finite size effects on the fluid confined in the central portion of the pore. We next present a new kernel for pore size distribution (PSD) analysis, based entirely on molecular simulation, which consists of local isotherms for nitrogen adsorption in carbon slit pores at 77 K. The kernel is obtained by combining grand canonical Monte Carlo (GCMC) method and open pore cell MC method that was developed in the previous study. We show that overall trends of the PSDs of activated carbons calculated with our new kernel and with conventional kernel from non-local density functional theory are nearly the same; however, apparent difference can be seen between them. As the third topic, we apply a free energy analysis method with the aid of GCMC simulations to investigate the gating behavior observed in a porous coordination polymer, and propose a mechanism for the adsorption-induced structural transition based on both the theory of equilibrium and kinetics. Finally, we construct an atomistic silica pore model that mimics MCM-41, which has atomic-level surface roughness, and perform molecular simulations to understand the mechanism of capillary condensation with hysteresis. We calculate the work required for the gas–liquid transition from the simulation data, and show that the adsorption branch with hysteresis for MCM-41 arise from spontaneous capillary condensation from a metastable state.  相似文献   

13.
14.
Behaviour of electrolytes confined in cylindrical and slit pores are studied by computer simulations at the molecular level. Previous equilibrium and structural properties obtained by Monte Carlo techniques using the restrictive primitive model are discussed. Transport properties are calculated by the canonical molecular dynamics technique for ions with Lennard–Jones cores. Assuming an external electric potential, the chemical potential of individual ions can be balanced without the need for a grand canonical procedure. The mobility of the counterion is affected by the surface charge density. At a high surface charge, the mean square axial displacement of the counterion calculated is lower than the bulk value due to its high concentration near the charged wall.  相似文献   

15.
An anisotropic united-atom (AUA4) intermolecular potential has been derived for the family of alkanols by first optimizing a set of charges to reproduce the electrostatic potential of the isolated molecules of methanol and ethanol and then by adjusting the parameters of the OH group to fit selected equilibrium properties. In particular, the proposed potential includes additional extra-atomic charges in order to improve the matching to the electrostatic field. Gibbs ensemble Monte Carlo simulations were performed to determine the phase equilibria, while the critical region was explored by means of grand canonical Monte Carlo simulations combined with histogram reweighting techniques. In order to increase the transferability of the model, only the parameters of the Lennard-Jones OH group have been fitted, the parameters of the other AUA groups are taken from previous works. Nevertheless, a good level of agreement was obtained for all compounds considered in this work. In particular, excellent results were obtained for the Henry constants calculation of different gases in alkanols.  相似文献   

16.
We present a modification of the gauge cell Monte Carlo simulation method [A. V. Neimark and A. Vishnyakov, Phys. Rev. E 62, 4611 (2000)] designed for chemical potential calculations in small confined inhomogeneous systems. To measure the chemical potential, the system under study is set in chemical equilibrium with the gauge cell, which represents a finite volume reservoir of ideal particles. The system and the gauge cell are immersed into the thermal bath of a given temperature. The size of the gauge cell controls the level of density fluctuations in the system. The chemical potential is rigorously calculated from the equilibrium distribution of particles between the system cell and the gauge cell and does not depend on the gauge cell size. This scheme, which we call a mesoscopic canonical ensemble, bridges the gap between the canonical and the grand canonical ensembles, which are known to be inconsistent for small systems. The ideal gas gauge cell method is illustrated with Monte Carlo simulations of Lennard-Jones fluid confined to spherical pores of different sizes. Special attention is paid to the case of extreme confinement of several molecular diameters in cross section where the inconsistency between the canonical ensemble and the grand canonical ensemble is most pronounced. For sufficiently large systems, the chemical potential can be reliably determined from the mean density in the gauge cell as it was implied in the original gauge cell method. The method is applied to study the transition from supercritical adsorption to subcritical capillary condensation, which is observed in nanoporous materials as the pore size increases.  相似文献   

17.
Commonly, the confinement effects are studied from the grand canonical Monte Carlo (GCMC) simulations from the computation of the density of liquid in the confined phase. The GCMC modeling and chemical potential (μ) calculations are based on the insertion/deletion of the real and ghost particle, respectively. At high density, i.e., at high pressure or low temperature, the insertions fail from the Widom insertions while the performing methods as expanded method or perturbation approach are not efficient to treat the large and complex molecules. To overcome this problem we use a simple and efficient method to compute the liquid's density in the confined medium. This method does not require the precalculation of μ and is an alternative to the GCMC simulations. From the isothermal-isosurface-isobaric statistical ensemble we consider the explicit framework/liquid external interface to model an explicit liquid's reservoir. In this procedure only the liquid molecules undergo the volume changes while the volume of the framework is kept constant. Therefore, this method is described in the Np(n)AV(f)T statistical ensemble, where N is the number of particles, p(n) is the normal pressure, V(f) is the volume of framework, A is the surface of the solid/fluid interface, and T is the temperature. This approach is applied and validated from the computation of the density of the methanol and water confined in the mesoporous cylindrical silica nanopores and the MIL-53(Cr) metal organic framework type, respectively.  相似文献   

18.
Correlation between phase behaviors of a Lennard-Jones fluid in and outside a pore is examined over wide thermodynamic conditions by grand canonical Monte Carlo simulations. A pressure tensor component of the confined fluid, a variable controllable in simulation but usually uncontrollable in experiment, is related with the pressure of a bulk homogeneous system in equilibrium with the confined system. Effects of the pore dimensionality, size, and attractive potential on the correlations between thermodynamic properties of the confined and bulk systems are clarified. A fluid-wall interfacial tension defined as an excess grand potential is evaluated as a function of the pore size. It is found that the tension decreases linearly with the inverse of the pore diameter or width.  相似文献   

19.
The critical behavior of square-well dimer fluid has been investigated using grand canonical ensemble Monte Carlo simulations combined with a histogram reweighting technique, hyper-parallel tempering and finite-size scaling. The critical temperature and density obtained are T(c)*=1.5495±0.0009 and ρ(c)*=0.1473±0.0007, which are 2.5% lower and 5.2% higher than previous results. Coexistence curves both near to and far from the critical point were obtained. The vapor-liquid equilibrium data far from the critical point are consistent with previous results. Simulation results show that the contribution of |t|(1-α) to the coexistence diameter of square-well dimer fluid dominates the critical behavior and the contribution of |t|(2β) is larger than for a hard-core square-well fluid.  相似文献   

20.
The grand canonical simulation algorithm is considered as a general methodology to sample the configuration of water molecules confined within protein environments. First, the probability distribution of the number of water molecules and their configuration in a region of interest for biochemical simulations, such as the active site of a protein, is derived by considering a finite subvolume in open equilibrium with a large system serving as a bulk reservoir. It is shown that the influence of the bulk reservoir can be represented as a many-body potential of mean force acting on the atoms located inside the subvolume. The grand canonical Monte Carlo (GCMC) algorithm, augmented by a number of technical advances to increase the acceptance of insertion attempts, is implemented, and tested for simple systems. In particular, the method is illustrated in the case of a pure water box with periodic boundary conditions. In addition, finite spherical systems of pure water and containing a dialanine peptide, are simulated with GCMC while the influence of the surrounding infinite bulk is incorporated using the generalized solvent boundary potential [W. Im, S. Berneche, and B. Roux, J. Chem. Phys. 114, 2924 (2001)]. As a last illustration of water confined in the interior of a protein, the hydration of the central cavity of the KcsA potassium channel is simulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号