首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a successive quadratic programming algorithm for solving general nonlinear programming problems. In order to avoid the Maratos effect, direction-finding subproblems are derived by modifying the second-order approximations to both objective and constraint functions of the problem. We prove that the algorithm possesses global and superlinear convergence properties.This work was supported in part by a Scientific Research Grant-in-Aid from the Ministry of Education, Science and Culture, Japan.  相似文献   

2.
On affine scaling algorithms for nonconvex quadratic programming   总被引:8,自引:0,他引:8  
We investigate the use of interior algorithms, especially the affine-scaling algorithm, to solve nonconvex — indefinite or negative definite — quadratic programming (QP) problems. Although the nonconvex QP with a polytope constraint is a hard problem, we show that the problem with an ellipsoidal constraint is easy. When the hard QP is solved by successively solving the easy QP, the sequence of points monotonically converge to a feasible point satisfying both the first and the second order optimality conditions.Research supported in part by NSF Grant DDM-8922636 and the College Summer Grant, College of Business Administration, The University of Iowa.  相似文献   

3.
We study the performance of four general-purpose nonlinear programming algorithms and one special-purpose geometric programming algorithm when used to solve geometric programming problems. Experiments are reported which show that the special-purpose algorithm GGP often finds approximate solutions more quickly than the general-purpose algorithm GRG2, but is usually not significantly more efficient than GRG2 when greater accuracy is required. However, for some of the most difficult test problems attempted, GGP was dramatically superior to all of the other algorithms. The other algorithms are usually not as efficient as GGP or GRG2. The ellipsoid algorithm is most robust.This work was supported in part by the National Science Foundation, Grant No. MCS-81-02141.  相似文献   

4.
Methods are considered for solving nonlinear programming problems using an exactl 1 penalty function. LP-like subproblems incorporating a trust region constraint are solved successively both to estimate the active set and to provide a foundation for proving global convergence. In one particular method, second order information is represented by approximating the reduced Hessian matrix, and Coleman-Conn steps are taken. A criterion for accepting these steps is given which enables the superlinear convergence properties of the Coleman-Conn method to be retained whilst preserving global convergence and avoiding the Maratos effect. The methods generalize to solve a wide range of composite nonsmooth optimization problems and the theory is presented in this general setting. A range of numerical experiments on small test problems is described.  相似文献   

5.
We produced a nonlinear optimization software program which is based on a Sequential Quadratic Programming (SQP) method (Schittkowski, 1981a). Our program has several original characteristics: (1) automatic choice between two QP solvers, the Goldfarb—Idnani (GI) method (Goldfarb and Idnani, 1983) and the Least Squares (LS) method (Schittkowski, 1981b); (2) an augmented Lagrange function (Schittkowski, 1981a) as the objective function for line search; (3) adaptive Armijo method for line search; (4) direct definition of upper and lower bounds for variables and constraint functions; and (5) accurate numerical differentials. These characteristics ensure the reliability of our program for solving standard problems. In this paper, point (3) is described in detail. Then, the program is applied to an actual problem, the optimal placement of blocks. A model for this problem has been suggested by Sha and Dutton (1984), but it was unsuited to treatment by the SQP method. Thus we modify it to ensure program applicability.  相似文献   

6.
One of the most interesting topics related to sequential quadratic programming algorithms is how to guarantee the consistence of all quadratic programming subproblems. In this decade, much work trying to change the form of constraints to obtain the consistence of the subproblems has been done. The method proposed by De O. Pantoja J.F. A. and coworkers solves the consistent problem of SQP method, and is the best to the authors’ knowledge. However, the scale and complexity of the subproblems in De O. Pantoja’s work will be increased greatly since all equality constraints have to be changed into absolute form. A new sequential quadratic programming type algorithm is presented by means of a special ε-active set scheme and a special penalty function. Subproblems of the new algorithm are all consistent, and the form of constraints of the subproblems is as simple as one of the general SQP type algorithms. It can be proved that the new method keeps global convergence and Local superlinear convergence. Project partly supported by the National Natural Science Foundation of China.  相似文献   

7.
A successive quadratic programming algorithm for solving SDP relaxation of Max- Bisection is provided and its convergence result is given.The step-size in the algorithm is obtained by solving n easy quadratic equations without using the linear search technique.The numerical experiments show that this algorithm is rather faster than the interior-point method.  相似文献   

8.
Based on an augmented Lagrangian line search function, a sequential quadratically constrained quadratic programming method is proposed for solving nonlinearly constrained optimization problems. Compared to quadratic programming solved in the traditional SQP methods, a convex quadratically constrained quadratic programming is solved here to obtain a search direction, and the Maratos effect does not occur without any other corrections. The “active set” strategy used in this subproblem can avoid recalculating the unnecessary gradients and (approximate) Hessian matrices of the constraints. Under certain assumptions, the proposed method is proved to be globally, superlinearly, and quadratically convergent. As an extension, general problems with inequality and equality constraints as well as nonmonotone line search are also considered.  相似文献   

9.
Descent approaches for quadratic bilevel programming   总被引:7,自引:0,他引:7  
The bilevel programming problem involves two optimization problems where the data of the first one is implicitly determined by the solution of the second. In this paper, we introduce two descent methods for a special instance of bilevel programs where the inner problem is strictly convex quadratic. The first algorithm is based on pivot steps and may not guarantee local optimality. A modified steepest descent algorithm is presented to overcome this drawback. New rules for computing exact stepsizes are introduced and a hybrid approach that combines both strategies is discussed. It is proved that checking local optimality in bilevel programming is a NP-hard problem.Support of this work has been provided by INIC (Portugal) under Contract 89/EXA/5, by FCAR (Québec), and by NSERC and DND-ARP (Canada).  相似文献   

10.
Two interior-point algorithms are proposed and analyzed, for the (local) solution of (possibly) indefinite quadratic programming problems. They are of the Newton-KKT variety in that (much like in the case of primal-dual algorithms for linear programming) search directions for the “primal” variables and the Karush-Kuhn-Tucker (KKT) multiplier estimates are components of the Newton (or quasi-Newton) direction for the solution of the equalities in the first-order KKT conditions of optimality or a perturbed version of these conditions. Our algorithms are adapted from previously proposed algorithms for convex quadratic programming and general nonlinear programming. First, inspired by recent work by P. Tseng based on a “primal” affine-scaling algorithm (à la Dikin) [J. of Global Optimization, 30 (2004), no. 2, 285–300], we consider a simple Newton-KKT affine-scaling algorithm. Then, a “barrier” version of the same algorithm is considered, which reduces to the affine-scaling version when the barrier parameter is set to zero at every iteration, rather than to the prescribed value. Global and local quadratic convergence are proved under nondegeneracy assumptions for both algorithms. Numerical results on randomly generated problems suggest that the proposed algorithms may be of great practical interest. The work of the first author was supported in part by the School of Computational Science of Florida State University through a postdoctoral fellowship. Part of this work was done while this author was a Research Fellow with the Belgian National Fund for Scientific Research (Aspirant du F.N.R.S.) at the University of Liège. The work of the second author was supported in part by the National Science Foundation under Grants DMI9813057 and DMI-0422931 and by the US Department of Energy under Grant DEFG0204ER25655. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation or those of the US Department of Energy.  相似文献   

11.
We describe a primal-dual interior point algorithm for convex quadratic programming problems which requires a total of number of iterations, whereL is the input size. Each iteration updates a penalty parameter and finds an approximate Newton direction associated with the Karush-Kuhn-Tucker system of equations which characterizes a solution of the logarithmic barrier function problem. The algorithm is based on the path following idea. The total number of arithmetic operations is shown to be of the order of O(n 3 L).  相似文献   

12.
A standard Quadratic Programming problem (StQP) consists in minimizing a (nonconvex) quadratic form over the standard simplex. For solving a StQP we present an exact and a heuristic algorithm, that are based on new theoretical results for quadratic and convex optimization problems. With these results a StQP is reduced to a constrained nonlinear minimum weight clique problem in an associated graph. Such a clique problem, which does not seem to have been studied before, is then solved with an exact and a heuristic algorithm. Some computational experience shows that our algorithms are able to solve StQP problems of at least one order of magnitude larger than those reported in the literature.  相似文献   

13.
We present a general active set algorithm for the solution of a convex quadratic programming problem having a parametrized Hessian matrix. The parametric Hessian matrix is a positive semidefinite Hessian matrix plus a real parameter multiplying a symmetric matrix of rank one or two. The algorithm solves the problem for all parameter values in the open interval upon which the parametric Hessian is positive semidefinite. The algorithm is general in that any of several existing quadratic programming algorithms can be extended in a straightforward manner for the solution of the parametric Hessian problem.This research was supported by the Natural Sciences and Engineering Research Council under Grant No. A8189 and under a Postgraduate Scholarship, by an Ontario Graduate Scholarship, and by the University of Windsor Research Board under Grant No. 9432.  相似文献   

14.
We present a general active set algorithm for the solution of a convex quadratic programming problem having a parametrized Hessian matrix. The parametric Hessian matrix is a positive semidefinite Hessian matrix plus a real parameter multiplying a symmetric matrix of rank one or two. The algorithm solves the problem for all parameter values in the open interval upon which the parametric Hessian is positive semidefinite. The algorithm is general in that any of several existing quadratic programming algorithms can be extended in a straightforward manner for the solution of the parametric Hessian problem. This research was supported by the Natural Sciences and Engineering Research Council under Grant No. A8189 and under a Postgraduate Scholarship, by an Ontario Graduate Scholarship, and by the University of Windsor Research Board under Grant No. 9432.  相似文献   

15.
16.
We introduce new augmented Lagrangian algorithms for linear programming which provide faster global convergence rates than the augmented algorithm of Polyak and Treti'akov. Our algorithm shares the same properties as the Polyak-Treti'akov algorithm in that it terminates in finitely many iterations and obtains both primal and dual optimal solutions. We present an implementable version of the algorithm which requires only approximate minimization at each iteration. We provide a global convergence rate for this version of the algorithm and show that the primal and dual points generated by the algorithm converge to the primal and dual optimal set, respectively.  相似文献   

17.
We give several linear time algorithms for the continuous quadratic knapsack problem. In addition, we report cycling and wrong-convergence examples in a number of existing algorithms, and give encouraging computational results for large-scale problems.   相似文献   

18.
The family of feasible methods for minimization with nonlinear constraints includes the nonlinear projected gradient method, the generalized reduced gradient method (GRG), and many variants of the sequential gradient restoration algorithm (SGRA). Generally speaking, a particular iteration of any of these methods proceeds in two phases. In the restoration phase, feasibility is restored by means of the resolution of an auxiliary nonlinear problem, generally a nonlinear system of equations. In the minimization phase, optimality is improved by means of the consideration of the objective function, or its Lagrangian, on the tangent subspace to the constraints. In this paper, minimal assumptions are stated on the restoration phase and the minimization phase that ensure that the resulting algorithm is globally convergent. The key point is the possibility of comparing two successive nonfeasible iterates by means of a suitable merit function that combines feasibility and optimality. The merit function allows one to work with a high degree of infeasibility at the first iterations of the algorithm. Global convergence is proved and a particular implementation of the model algorithm is described.  相似文献   

19.
An algorithm has been developed to solve quadratic programs that have a dynamic programming structure. It has been developed for use as part of a parallel trajectory optimization algorithm and aims to achieve significant speed without sacrificing numerical stability. the algorithm makes use of the dynamic programming problem structure and the domain decomposition approach. It parallelizes the orthogonal factorization null-space method of quadratic programming by developing a parallel orthogonal factorization and a parallel Cholesky factorization. Tests of the algorithm on a 32-node INTEL iPSC/2 hypercube demonstrate speedup factors as large as 10 in comparison to the fastest known equivalent serial algorithm.This research was supported in part by the National Aeronautics and Space Administration under Grant No. NAG-1-1009.  相似文献   

20.
《Optimization》2012,61(6):627-639
Abstract: In this article, we consider the concave quadratic programming problem which is known to be NP hard. Based on the improved global optimality conditions by [Dür, M., Horst, R. and Locatelli, M., 1998, Necessary and sufficient global optimality conditions for convex maximization revisited, Journal of Mathematical Analysis and Applications, 217, 637–649] and [Hiriart-Urruty, J.B. and Ledyav, J.S., 1996, A note in the characterization of the global maxima of a convex function over a convex set, Journal of Convex Analysis, 3, 55–61], we develop a new approach for solving concave quadratic programming problems. The main idea of the algorithms is to generate a sequence of local minimizers either ending at a global optimal solution or at an approximate global optimal solution within a finite number of iterations. At each iteration of the algorithms we solve a number of linear programming problems with the same constraints of the original problem. We also present the convergence properties of the proposed algorithms under some conditions. The efficiency of the algorithms has been demonstrated with some numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号