首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of 3-Amino-2H-azirines with Diphenylcyclopropenethione 3-Dimethylamino-2H-azirines ( 4a , 4b ) react with diphenylcyclopropenethione ( 8 ) to give 4(3 H)-pyridinethione derivatives of type 10 (Scheme 3). The reaction mechanism for the formation of 10 is given in Scheme 3 by analogy with a previous reported one [4] [5]. Hydrolysis of the 4(3 H)-pyridinethione 10a yields 2-oxo-2, 3-dihydro-4(1 H)-pyridinethione ( 11 ) and reduction of 10a with sodium borohydride leads to the 2, 3-dihydro-4 (1 H)-pyridinethione 12 (Scheme 4). The results of the reaction of 4a , 4b and the thione 8 demonstrate the similarity to the reaction of 4a , 4b and 2 [5] (cf. Scheme 1). In contrast, the reactions of imines of type 7a with 2 and 8 , respectively, lead to different products (cf. [1] [6]).  相似文献   

2.
Acid-Catalysed Formation of Imidazoles from 2H-Azirines or Vinylazides and Nitriles The reaction of 2H-azirines with nitriles in the presence of boron trifluoride etherate to yield the corresponding imidazoles is described. 2,3-Diphenyl-2H-azirine ( 10 ) gives 2-substituted 4,5-diphenyl imidazoles in moderate bis good yields (see Table 1). The reaction of 10 with acrylonitrile only leads to the formation of 4,5-diphenyl-2-vinylimidazole ( 17 ). No products resulting from an addition to the C,C double bond are observed. 2H-Azirine 10 and ethyl cyanoacetate yield the expected imidazole 18 (30%) but also 2-cyanomethyl-4,5-diphenyloxazole ( 20 ; 7%) (see Scheme 4). The yield of imidazole formation mainly depends on the substituents in position 2 of the 2H-azirines (see Scheme 6), a change of the substitutents in position 3 having only little influence. The best yields are observed with a phenyl group at C(2) of the 2H-azirines. These observations are in agreement with the occurrence of 1-azaallyl cations formed by ring opening of the 2H-azirines linked to the Lewis acid (boron trifluoride). Similar results are obtained with the corresponding vinyl azides with the exception of 1-azido-1-phenylethylene ( 28 ). Whereas the corresponding 3-phenyl-2H-azirine ( 24 ) gives 2,4-diphenylimidazole ( 33 ; Scheme 6) in the presence of benzonitrile and boron trifluoride etherate, the azide 28 yields only acetanilide (86%). In the presence of triethyloxonium tetrafluoroborate 2H-azirines and benzonitrile react to yield the corresponding 1-ethylimidazoles (see Scheme 9). This again demonstrates that 1-azaallyl cations must be intermediates which react with the nitrile presumably in a Ritter type reaction. 13C-NMR. spectra of 2H-azirines are also reported (Table 2).  相似文献   

3.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Oxazolidine-2-thione to 3-(2-Hydroxyethyl)-2- thiohydantoins The reaction of 3-(dimethylamino)-2H-azirines 1 and 1,3-oxazolidine-2-thione ( 6 ), in MeCN at room temperature, yields, after hydrolytic workup, 3-(2-hydroxyethyl)-2-thiohydantoins 7 (Scheme 2). In the case of the spirocyclic 1c , crystallization of the crude reaction mixture leads to spiro [cyclopentane-1, 7′(7′aH)-imidazo [4, 3-b] oxazole] -5′-thione 8c . The mechanism is discussed.  相似文献   

4.
Reactions of valencepolaromeric ketenes of mesoionic heterocyles with 3-dimethylamino-2H-azirines Reactions of the 3-dimethylamino-2H-azirines 1a and 1b with the mesoionic oxazole 5 and the mesoionic dithiole 6 in acetonitrile at room temperature yield the 1:1 adducts 11 , 12 , 19 and 20 , respectively (Schemes 5 and 8). These products can be formulated as adducts of the aminoazirines and the ketenes 5a and 6a , which are valence polaromeric forms of the mesoionic heterocycles 5 and 6 (Scheme 2). The structure of the adducts has been elucidated by spectral data and their comparison with the data of (Z)- 11 , the structure of which has been established by X-ray [19]. Oxidation of the 1:1 adducts with KMnO4 in a two-phase system yields 4-dimethylamino-3-oxazolin-2-ones (cf. Scheme 6) by clevage of the exocyclic C,C-double bond. A mechanism for the formation of the adducts is given in Scheme 9: Nucleophilic attack of 1 on the ketene leads to a primary adduct of type a , which undergoes clevage of the former N(1), C(2)-azirine bond to give adducts of type 11 or 19 . The N(1), C(2)-ring opening of 1a in the reaction with ketenes contrasts with the N(1), C(3)-opening of 1a in the addition with, for instance, isothiocyanates. These different ring openings are explained by the difference in nucleophilicity of the heteroatoms X and Y in a ′ (Scheme 10).  相似文献   

5.
Boron-Trifluoride-Catalyzed Reactions of 3-Amino-2H-azirines with Amino-acid Esters and Amines After activation by protonation or complexation with BF3, 3-amino-2H-azirines 1 react with the amino group of α-amino-acid esters 3 to give 3,6-dihydro-5-aminopyrazin-2(1H)-ones 4 by ring enlargement (Scheme 2, Table 1). The configuration of 3 is retained in the products 4 . With unsymmetrically substituted 1 (R1 ≠ R2), two diastereoisomers of 4 (cis and trans) are formed in a ratio of 1:1 to 2:1. With β-amino-acid esters 5 and 7 , only openchain α-amino-imidamides 6 and 8 , respectively, are formed, but none of the seven-membered heterocycle (Scheme 3). Primary amines also react with BF3-complexed 1 to yield α-amino-imidamides of type 9 (Scheme 4, Table 2). Compound 9b is characterized chemically by its transformation into crystalline derivatives 10 and 12 with 4-nitrobenzoyl chloride and phenyl isothiocyanate, respectively (Scheme 5). The structure of 12 is established by X-ray crystallography. Mechanisms for the reaction of activated 1 with amino groups are proposed in Schemes 6 and 7.  相似文献   

6.
Dipolar 1:1 Adducts from the Reaction of 3-Amino-2H-azirines with 1,3,4-Oxadiazol- and 1,3,4-Thiadiazol-2(3H)-ones 3-Amino-2H-azirines 1 react with 5-(trifluoromethyl)-1,3,4-oxadiazol-2(3H)-one ( 2 ) as well as with different 5-substituted 1,3,4-thiadiazol-2(3H)-ones ( 5a–e ) in 2-propanol at room temperature to give dipolar 1:1 adducts of type 3 and 6 , respectively, in reasonable-to-good yields (Schemes 3 and 6, Tab. 1 and 2). The structure of two of these dipolar adducts, 6a and 6e , which are formally donor-acceptor-stabilized azomethin imines, have been elucidated by X-ray crystallography (Figs. 1-4). In the reaction of 2 and sterically crowded 3-amino-2H-azirines 1c–e with a 2-propyl and 2-propenyl substituent, respectively, at C(2), a 4,5-dihydro-1,2,4-triazin-3(2H)-one of type 4 is formed as minor product (Scheme 3 and Table 1). Independent syntheses of these products proved the structure of 4 . Several reaction mechanisms for the formation of compounds 3 and 4 are discussed, the most likely ones are described in Scheme 4: reaction of 2 as an NH-acidic compound leads, via a bicyclic zwitterion of type A , to 3 as well as to 4 . In the latter reaction, a ring-expanded intermediate B is most probable.  相似文献   

7.
Photochemistry of 4-substituted 5-Methyl-3-phenyl-isoxazoles. 4-Trideuterioacetyl-5-methyl-3-phenyl-isoxazole ([CD3CO]- 27 ), upon irradiation with 254 nm light, was converted into a 1:1 mixture of oxazoles [CD3CO]- 35 and [CD3]- 35 (Scheme 13). This isomerization is accompagnied by a slower transformation of ([CD3CO]- 27 ) into [CD3]- 27 . Irradiation of the isoxazole derivatives 28, 29, 30 and (E)- 31 yielded only oxazoles 36, 37, 38 and (E), (Z)- 39 ; no 4-acetyl-5-alkoxy-2-phenyl-oxazole, 2-acetyl-3-methyl-5-phenyl-pyrrole or 2-acetyl-4-methoxycarbonyl-3-methyl-5-phenyl-pyrrole, respectively, were formed (Scheme 9 and 10). Similarly (E)- 32 gave a mixture of (E), (Z)- 40 only (Scheme 11). Upon shorter irradiation, the intermediate 2H-azirines (E), (Z)- 41 could be isolated (Scheme 11). Photochemical (E)/(Z)-isomerization of the 2-(trifluoro-ethoxycarbonyl)-1-methyl-vinyl side chain in all the compounds 32, 40 and 41 is fast. At 230° the isoxazoles (E)- and (Z)- 32 are converted into oxazoles (E), (Z)- 40 . The same compounds are also obtained by thermal isomerization of the 2H-azirines (E), (Z)- 41 . The most probable mechanism for the photochemical transformations of the isoxazoles, as exemplified in the case of the isoxazole 27 , is shown in Scheme 13. A benzonitrile-methylide intermediate is postulated for the photochemical conversion of the 2H-azirines into oxazoles. 2H-Azirines are also intermediates in the thermal isoxazole-oxazole rearrangement. It is however not yet clear, if the thermal 2H-azirine-oxazole transformation involves the same transient species as the photochemical reaction. A mechanism for the photochemical isomerization of the 2H-azirine 11 to the oxazole 15 is proposed (Scheme 3).  相似文献   

8.
The reaction of 3-(dimethylamino)-2H-azirines 1a–c and 2-amino-4,6-dinitrophenol (picramic acid, 2 ) in MeCN at 0° to room temperature leads to a mixture of the corresponding 1,2,3,4-tetrahydroquinazoline-2-one 5 , 3-(dimethylamino)-1,2-dihydroquinazoline 6 , 2-(1-aminoalkyl)-1,3-benzoxazole 7 , and N-[2-(dimethylamino)phenyl]-α-aminocarboxamide 8 (Scheme 3). Under the same conditions, 3-(N-methyl-N-phenyl-amino)-2H-azirines 1d and 1e react with 2 to give exclusively the 1,3-benzoxazole derivative 7 . The structure of the products has been established by X-ray crystallography. Two different reaction mechanisms for the formation of 7 are discussed in Scheme 6. Treatment of 7 with phenyl isocyanate, 4-nitrobenzoyl chloride, tosyl chloride, and HCl leads to a derivatization of the NH2-group of 7 (Scheme 4). With NaOH or NaOMe as well as with morpholine, 7 is transformed into quinazoline derivatives 5 , 14 , and 15 , respectively, via ring expansion (Scheme 5). In case of the reaction with morpholine, a second product 16 , corresponding to structure 8 , is isolated. With these results, the reaction of 1 and 2 is interpreted as the primary formation of 7 , which, under the reaction conditions, reacts with Me2NH to yield the secondary products 5 , 6 , and 8 (Scheme 7).  相似文献   

9.
Boron Trifluoride Catalyzed Reaction of 3-Amino-2H-azirines and Amides: Formation of 4,4-Disubstituted 4H-Imidazoles Reaction of trifluoroacetamide and 3-amino-2H-azirines 1 in refluxing MeCN affords 4-amino-2-(trifluoromethyl)-4H-imidazoles 5 in fair yields (Scheme 3). Less acidic amides do not react with 1 under similar conditions. Therefore, a procedure involving BF3-catalysis has been elaborated: the aminoazirine 1 in CH2Cl2 at ?78° is treated with BF3 · Et2O and then with a solution of the sodium salt of an amide in THF, prepared by addition of sodium hexamethyldisilazane at ?78°. The 4H-imidazoles of type 5 are formed in ca. 50% yield (Scheme 4). Reaction mechanisms for this ring enlargement of 1 are proposed in Schemes 5 and 6.  相似文献   

10.
A New Aminoazirine Reaction. Formation of 3,6-Dihydropyrazin-2(1H)-ones The reaction of 3-(dimethylamino)-2H-azirines 1 and 2-(trifluoromethyl)-1,3-oxazol-5(2H)-ones 5 in MeCN or THF at 50–80° leads to 5-(dimethylamino)-3,6-dihydropyrazin-2(1H)-ones 6 (Scheme 3). Reaction mechanisms for the formation of 6 are discussed: either the oxazolones 5 react as CH-acidic heterocycles with 1 (Scheme 4), or the azirines 1 undergo a nucleophilic attack onto the carbonyl group of 5 (Scheme 6). The reaction via intermediate formation of N-(trifluoroacetyl)dipeptide amide 8 (Scheme 5) is excluded.  相似文献   

11.
4-Amino-1,5-dihydro-2H-pyrrol-2-ones from Boron Trifluoride Catalyzed Reactions of 3-Amino-2H-azirines with Carboxylic Acid Derivatives Reaction of 3-amino-2H-azirines 1 with ethyl 2-nitroacetate ( 6a ) in refluxing MeCN affords 4-amino-1,5-dihydro-2H-pyrrol-2-ones 7 and 3,6-diamino-2,5-dihydropyrazines 8 , the dimerization product of 1 (Scheme 2). Thus, 6a reacts with 1 as a CH-acidic compound by C? C bond formation via C-nucleophilic attack of deprotonated 6a onto the amidinium-C-atom of protonated 1 (Scheme 5). The scope of this reaction seems to be rather limited as 1 and 2-substituted 2-nitroacetates do not give any products besides the azirine dimer 8 (see Table 1). Sodium enolates of carboxylic esters and carboxamides 11 react with 1 under BF3 catalysis to give 4-amino-1,5-dihydro-2H-pyrrol-2-ones 12 in 50–80% yield (Scheme 3, Table 2). In an analogous reaction, 3-amino-2H-pyrrole 13 is formed from 1c and the Li-enolate of acetophenone (Scheme 4). A reaction mechanism for the ring enlargement of 1 involving BF3 catalysis is proposed in Scheme 6.  相似文献   

12.
Ring Enlargements and Ring Contractions in the Reaction of 1, 3-Oxazolidine-2, 4-diones and l, 3-Thiazolidine-2, 4-dione with 3-Amino-2H-azirines The reaction of 3-amino-2H-azirines 1 and 1, 3-oxazolidine-2, 4-diones 2 in MeCN at room temperature leads to 3, 4-dihydro-3-(2-hydroxyacetyl)-2H-imidazol-2-ones 3 in good yield (Scheme 2, Table 1). A reaction mechanism proceeding via ring enlargement of the bicyclic zwitterion A to give B, followed by transannular ring contraction to C, is proposed for the formation of 3 . This mechanism is in accordance with the result of the reaction of 2a and the 15N-labelled 1a *: in the isolated product 3a *, only N(3) is labelled (Scheme 1). The analogous reaction of 1 and 1, 3-thiazolidine-2, 4-dione ( 5 ) is more complex (Schemes 4 and 5, Table 2). Besides the expected 3, 4-dihydro-3-(2-mercaptoacetyl)-2H-imidazol-2-ones 7, 5-amino-3, 4-dihydro-2H-imidazol-2-ones of type 8 and/or N-(1, 4-thiazin-2-ylidene)ureas 9 are formed. In the case of 2-(dimethylamino)-1-azaspiro[2. 3]hex-1-ene ( 1d ), the postulated eight-membered intermediate 6d could be isolated. Its structure as well as that of 9f has been determined by X-ray structure analysis. A reaction mechanism for the formation of the 1, 4-thiazine derivatives of type 9 is proposed in Scheme 6.  相似文献   

13.
The 2,3-dihydro-1H-benz[f]indole-4,9-diones 3a–d , h were formed in a one-step reaction in 13–82% yield by an unprecedented [3 + 2] regioselective photoaddition of 2-amino-1,4-naphthoquinone ( 1 ) with various electronrich alkenes 2 (Scheme 1, Table). The [3 + 2] photoadducts derived from 1 with vinyl ethers and vinyl acetate gave 1H-benz[f]indole-4,9-diones 4e , f , i , in 33–72% yield, by spontaneous loss of the corresponding alcohol or AcOH from the resulting adducts; 4i has a kinamycin skeleton. The [3 + 2] photoaddition also took place on irradiation of the differently substituted amino-1,4-benzoquinones 6 , 7 , and 12 and excess alkenes 2 in benzene, giving 1H-indole-4,7-dione derivatives 13 and 14 (Scheme 3), 15a and 16 (Scheme 4), and 18 (Scheme 4), respectively. The initial products in these photoadditions were proved to be hydroquinones, the air oxidation of which yielded the heterocyclic quinones; 2,3-dihydro-2-methoxy-2-methyl-5-phenyl-1H-indole-1,4,7-triyl triacetate ( 19 ) was isolated after treatment of the crude photoaddition mixture obtained from 2-amino-5-phenyl-1,4-benzoquinone ( 7 ) and 2-methoxyprop-1-ene ( 2f ) with Ac2O and pyridine under N2. A pathway leading to the annelated hydroquinones involving ionic intermediates arising from an electron transfer in these photoadditions is proposed (Scheme 5).  相似文献   

14.
(4-Bromobut-2-en-1-yl)triphenylphosphonium bromide reacted with phenylhydrazine at 2°C in the presence of sodium carbonate to form triphenyl[4-(2-phenylhydrazinylidene)but-2-en-1-yl]phosphonium bromide in 62% yield. The obtained N-phenylhydrazine derivatives cyclized into the corresponding pyrazoline derivatives of phosphonium salts. Unlike phenylhydrazine, ethylhydrazine reacted with (4-bromobut-2-ene-1-yl)triphenylphosphonium bromide under the same conditions to afford triphenyl[(1-ethyl-4,5-dihydro-1Hpyrazol-3-yl)methyl]- and -[(1-ethyl-1H-pyrazol-3-yl)methyl]phosphonium bromides in yields of 60 and 40%.  相似文献   

15.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Thiazolidine-2-thione Reaction of 3-(dimethylamino)-2H-azirines 1 and 1,3-thiazolidine-2-thione ( 6 ) in MeCN at room temperature leads to a mixture of perhydroimidazo[4,3-b]thiazole-5-thiones 7 and N-[1-(4,5-dihydro-1,3-thiazol-2-yl)alkyl]-N′,N′-dimethylthioureas 8 (Scheme 2), whereas, in i-PrOH at ca. 60°, 8 is the only product (Scheme 4). It has been shown that, in polar solvents or under Me2NH catalysis, the primarily formed 7 isomerizes to 8 (Scheme 4). The hydrolysis of 7 and 8 leads to the same 2-thiohydantoine 9 (Scheme 3 and 5). The structure of 7a, 8c , and 9b has been established by X-ray crystallography (Chapt. 4). Reaction mechanisms for the formation and the hydrolysis of 7 and 8 are suggested.  相似文献   

16.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Benzoxazole-2(3H)-thione The reaction of 3-(dimethylamino)-2H-azirines 2 with 1,3-benzoxazole-2(3H)-thione ( 5 ), which can be considered as NH-acidic heterocycle (pKaca. 7.3), in MeCN at room temperature, leads to 3-(2-hydroxyphenyl)-2-thiohydantoins 6 and thiourea derivatives of type 7 (Scheme 2). A reaction mechanism for the formation of the products via the crucial zwitterionic intermediate A ′ is suggested. This intermediate was trapped by methylation with Mel and hydrolysis to give 9 (Scheme 4). Under normal reaction conditions, A ′ undergoes a ring opening to B which is hydrolyzed during workup to yield 6 or rearranges to give the thiourea 7. A reasonable intermediate of the latter transformation is the isothiocyanate E (Scheme 3) which also could be trapped by morpholine. In i-PrOH at 55–65° 2a and 5 react to yield a mixture of 6a , 2-(isopropylthio)-1,3-benzoxazole ( 12 ), and the thioamide 13 (Scheme 5). A mechanism for the surprising alkylation of 5 via the intermediate 2-amino-2-alkoxyaziridine F is proposed. Again via an aziridine, e.g. H ( Scheme 6 ), the formation of 13 can be explained.  相似文献   

17.
Nitrogen-containing diiron-hexacarbonyl complexes from 3-phenyl-2H-azirines Reaction of 2,2-dimethyl-3-phenyl-2H-azirine ( 1 ) with diiron-enneacarbonyl yields as an insertion product, and in addition to other products, the diiron-hexacarbonyl complex 2 (Scheme 1), whose structure was derived from spectral data, in particular 13C-NMR.-data (Table 1). With trimethylamine oxide in benzene, 2 is converted into the urea derivative 3 , and yields with cerium (IV) ammonium nitrate the nitrate 4 (Scheme 1). The analogous complexes 6 and 9 have been obtained by irradiation of 1-phenyl-vinyl azide ( 5 ) and ironpentacarbonyl (Scheme 1) and from vinyl isocyanate ( 8 ) and diiron-enneacarbonyl at 40° (Scheme 2), respectively. The azirine 1 , an acetylenic compound and diiron-enneacarbonyl in benzene react to give complexes of type 10 as the main product (Scheme 3). The structure of complex 10 has been established by X-ray single crystals analysis. On the 13C-NMR. time scale the carbonyl groups of compound 10 show a fluxional behaviour: below ?50° the CO-groups of one of the two Fe(CO)3-groups undergo intranuclear exchange, above ?50° the CO-groups of both Fe(CO)3-groups undergo intranuclear exchange. Tentative reaction mechanisms for the formation of the complexes of type 2 and 10 are formulated in Schemes 5, 6 and 7.  相似文献   

18.
Reaction of 3-Amino-2H-azirines with Salicylohydrazide 3-Amino-2H-azirines 1a–g react with salicylohydrazide ( 7 ) in MeCN at 80° to give 2H, 5H-1,2,4-triazines 10 , 1,3,4-oxadiazoles 12 and, in the case of 1d , 1,2,4-triazin-6-one 11a (Scheme 3). The precursor of these heterocycles, the amidrazone of type 9 , except for 9c and 9g , which could not be isolated, has been found as the main product after reaction of 1 and 7 in MeCN at room temperature. 3-(N-Methyl-N-phenylamino)-2-phenyl-2H-azirin ( 1g ) reacts with 7 to give mainly the aromatic triazines 15b1 and 15b2 . In this case, two unexpected by-products, 16 and salicylamide ( 17 ), occurred, probably by disproportionation of a 1:1 adduct from 1g and 7 (Scheme 8). Oxidation of 10f with DDQ leads to the triazine 15a . The structure of 10c, 11a, 12c, 13 (by-product in the reaction of 1b and 7 ), the N′-phenylureido derivative 14 of 9d (Scheme 4) as well as 15b2 has been established by X-ray crystallography. The ratio of 10/12 as a function of substitution pattern in 1 and solvent has been investigated (Tables 1, 3, 4, and 7). A mechanism for the formation of 10 and 12 is proposed in Scheme 7.  相似文献   

19.
Reactions of 3-Dimethylamino-2,2-dimethyl-2H-azirine with NH-Acidic Heterocycles; Synthesis of 4H-Imidazoles In this paper, reactions of 3-dimethylamino-2,2-dimethyl-2H-azirine ( 1 ) with heterocyclic compounds containing the structure unit CO? NH? CO? NH are described. 5,5-Diethylbarbituric acid ( 5 ) reacts with 1 in refluxing 2-propanol to give the 4H-imidazole derivative 6 (Scheme 2) in 80% yield. The structure of 6 has been established by X-ray crystallography. Under similar conditions 1 and isopropyl uracil-6-carboxylate ( 7 ) yield the 4H-imidazole 8 (Scheme 3), the structure of which is deduced from spectral data and the degradation reactions shown in Scheme 3. Hydrolysis of 8 with 3N HCl at room temperature leads to the α-ketoester derivative 9 , which in refluxing methanol gives dimethyl oxalate and 5-dimethyl-amino-2,4,4-trimethyl-4H-imidazole ( 10 ). On hydrolysis the latter is converted to the known 2,4,4-trimethyl-2-imidazolin-5-one ( 11 ) [6]. Quinazolin-2,4 (1H, 3H)-dione ( 12 ) and imidazolidinetrione (parabanic acid, 14 ) undergo with 1 a similar reaction to give the 4H-imidazoles 13 and 15 , respectively (Schemes 4 and 5). In Scheme 6 two possible mechanisms for the formation of 4H-imidazoles from 1 and heterocycles of type 16 are formulated. The zwitterionic intermediate f corresponds to b in Scheme 1. Instead of dehydration as in the case of the reaction of 1 with phthalohydrazide [3], or ring expansion as with saccharin and cyclic imides [1] [2], f , undergoes ring opening (way A or B). Decarboxylation then leads to the 4H-imidazoles 17 .  相似文献   

20.
At 0° in MeCN, 2,2-disubstituted 3-amino-2H-azirines 1 and 4,4-disubstituted 1,2-thiazetidin-3-one 1,1-dioxides 7 react smoothly to give 1,2,5-thiadiazepin-6-one 1,1-dioxides of type 8 (Scheme 2). The reaction mechanism of this regiospecific ring enlargement to seven-membered heterocycles follows previously described pathways. The structures of 7a and 8b were established by X-ray crystallography (see Figs. 1 and 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号