首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 2‐propynyl group in the title compound, C17H22O10, adopts an exoanomeric conformation, with the acetylenic group gauche with respect to position C1. Comparison of 13C NMR chemical shifts from solution and the solid state suggest that the acetylenic group also adopts a conformation anti to C1 in solution. The pyranose ring adopts a 4C1 conformation. Of the three secondary O‐acetyl groups, that on position O4, flanked by two equatorial groups, adopts a syn conformation, in agreement with recent generalizations [González‐Outeiriño, Nasser & Anderson (2005). J. Org. Chem. 70 , 2486–2493]. The acetyl group on position O3 adopts a gauche conformation, also in agreement with the recent generalizations, but that on position O2 adopts a syn conformation, not in agreement with the recent generalizations.  相似文献   

2.
The title compound, C16H24O10·0.11H2O, is a key intermediate in the synthesis of 2‐deoxy‐2‐[18F]fluoro‐d ‐glucose (18F‐FDG), which is the most widely used molecular‐imaging probe for positron emission tomography (PET). The crystal structure has two independent molecules (A and B) in the asymmetric unit, with closely comparable geometries. The pyranose ring adopts a 4C1 conformation [Cremer–Pople puckering parameters: Q = 0.553 (2) Å, θ = 16.2 (2)° and ϕ = 290.4 (8)° for molecule A, and Q = 0.529 (2) Å, θ =15.3 (3)° and ϕ = 268.2 (9)° for molecule B], and the dioxolane ring adopts an envelope conformation. The chiral centre in the dioxolane ring, introduced during the synthesis of the compound, has an R configuration, with the ethoxy group exo to the mannopyranose ring. The asymmetric unit also contains one water molecule with a refined site‐occupancy factor of 0.222 (8), which bridges between molecules A and B via O—H...O hydrogen bonds.  相似文献   

3.
Yang Cao 《Tetrahedron》2009,65(12):2574-1552
Synthesis and conformational analyses of 1-O-acetyl-3,6-di-O-benzyl-2,4-O-[(Z)-2-butenylene]-β-d-glucopyranose are described. The construction of the trioxabicyclo[6.3.1]dodecane skeleton of the compound was initiated from a ring-opened glucose, followed by the successive cyclization of first the nine-membered ring and then the six-membered ring. The pyranose of the compound was in 3S1, an axial-rich twist-boat conformation. This result demonstrated an alternative method for the restriction of the pyranose into the axial-rich twist-boat conformation in contrast to the procedures that use bulky silyl protecting groups.  相似文献   

4.
The title compound, [Co(NCS)2(C11H26N4)]2[Zn(NCS)4]·C2H5OH, has two similar cations with the CoIII atom coordinated in a planar fashion by the 13‐membered cyclic tetra­amine, in the 1R,4S,7R,10S configuration, and with trans isothio­cyanate ligands. The six‐membered chelate ring is in a chair conformation, with one axially and one equatorially oriented methyl substituent [mean Co—N = 1.948 (2) Å]. The `opposite' chelate ring (N4 and N7) is in an eclipsed conformation [mean Co—N = 1.928 (2) Å], and the `side' chelate rings have gauche conformations. The mean Co—NNCS distance is 1.928 (2) Å. Both cations have one Co—N—C group nearly linear and the other appreciably bent, with mean Co—N—C angles of 178.7 (1) and 160.4 (1)°, respectively. The [Zn(NCS)4]2− anion is approximately tetra­hedral, with Zn—N = 1.951 (1)–1.986 (1) Å, N—Zn—N = 104.5 (1)–111.9 (1)° and Zn—N—C = 152.5 (1)–179.4 (1)°. One NH group is hydrogen bonded to the ethanol O atom and the other NH groups are bonded to thio­cyanate S atoms, forming a network.  相似文献   

5.
About [Ag(S9)]?, a Symmetric Ten-Membered Ring System; Preparation, Structure, and Spectroscopic Characterization of the Sulfur Rich Compound [(PPh3)2N][Ag(S9)] · S8 Orange [(PPh3)2N][Ag(S9)] · S8 ( 1 ) could be obtained by reaction of a definite Sx2?-solution with AgNO3 and characterized by vibrational spectra (IR/Raman) and X-ray structure analysis. The anion [Ag(S9)]? shows a symmetric conformation of a ten-membered ring system. 1 crystallizes in the triclinic space group P1 (a = 1383.8(4), b = 1429.5(4), c = 1540.5(5) pm, α 62.38(2), β 68.05(2), γ 65.86(2)°, V = 2399.1 · 106 pm3, Z = 2; R = 0.077 for 5433 independent reflections (F0 > 3.92 σ(F0))).  相似文献   

6.
Molecular and Crystal Structure of 9λ4-Thia-2,4,6,8,10,11-hexaaza-1λ5,3λ5,5λ5,7λ5-tetraphosphabicylo[5.3.1]undeca-1,3,5,7(11),8,9-hexaene, Cyclotetraphosphazene Bridged by a Sulfur Diimide Group We have carried out an X-ray structure analysis of the title compound ( 1 ). 1 crystallizes in the monoclinic space group P21/b with a = 9.436(4), b = 20.102(7), c = 11.622(5) Å, γ = 103.52(8)°, Z = 8. There are two molecules in the asymmetric unit, which in approximation can be transformed one into the other by additional symmetry elements of a substructure of a space group B2/b. The S = N bond lengths are 1.53 Å. The P? N bonds connecting the SN2 system are 1.666 Å long. They are significantly longer than the P? N multible bonds in the P4N4 ring within a range of 1.517 to 1.565 Å. The sulfur diimide unit and its substituents are coplanar causing a half-boat conformation of the heterocyclic six membered ring. The cyclotetraphosphazene ring shows a flattened crown-saddle conformation, the phosphorous atoms arranged nearly at the corners of a square. Influenced by crystal packing there exist small deviations from the molecular mirror plane and also differences in conformation between the two molecules of the asymmetric unit.  相似文献   

7.
Abstract

The title 1, 2-anhydro sugar (10) was synthesized from methyl 4, 6-O-benzylidene-α-D-glucopyranoside or from 1, 2-O-ethylidene-α-D-glucopyranose. The key intermediate for the synthesis was 2-O-acetyl-3, 4-di-O-benzyl-6-deoxy-β-D-glucopyranosyl fluoride (8)which was transformed into the target compound by ring closure with potassium tert-butoxide. Calculations by the modified Karplus equation from vicinal coupling constants of 10 suggested that the conformation of 10 was almost an ideal 4 H 5 for the pyranose ring. Conformational analysis for the 1, 2-O-(R)-ethylidene intermediates 17 and 20 revealed that their pyranose ring basically adopted a B2,5 conformation.  相似文献   

8.
1‐(β‐d ‐Erythrofuranosyl)cytidine, C8H11N3O4, (I), a derivative of β‐cytidine, (II), lacks an exocyclic hydroxy­methyl (–CH2OH) substituent at C4′ and crystallizes in a global conformation different from that observed for (II). In (I), the β‐d ‐erythrofuranosyl ring assumes an E3 conformation (C3′‐exo; S, i.e. south), and the N‐glycoside bond conformation is syn. In contrast, (II) contains a β‐d ‐ribofuranosyl ring in a 3T2 conformation (N, i.e. north) and an anti‐N‐glycoside linkage. These crystallographic properties mimic those found in aqueous solution by NMR with respect to furan­ose conformation. Removal of the –CH2OH group thus affects the global conformation of the aldofuranosyl ring. These results provide further support for S/syn–anti and N/anti correlations in pyrimidine nucleosides. The crystal structure of (I) was determined at 200 K.  相似文献   

9.
The β‐pyranose form, (III), of 3‐deoxy‐d ‐ribo‐hexose (3‐deoxy‐d ‐glucose), C6H12O5, crystallizes from water at 298 K in a slightly distorted 4C1 chair conformation. Structural analyses of (III), β‐d ‐glucopyranose, (IV), and 2‐deoxy‐β‐d ‐arabino‐hexopyranose (2‐deoxy‐β‐d ‐glucopyranose), (V), show significantly different C—O bond torsions involving the anomeric carbon, with the H—C—O—H torsion angle approaching an eclipsed conformation in (III) (−10.9°) compared with 32.8 and 32.5° in (IV) and (V), respectively. Ring carbon deoxygenation significantly affects the endo‐ and exocyclic C—C and C—O bond lengths throughout the pyranose ring, with longer bonds generally observed in the monodeoxygenated species (III) and (V) compared with (IV). These structural changes are attributed to differences in exocyclic C—O bond conformations and/or hydrogen‐bonding patterns superimposed on the direct (intrinsic) effect of monodeoxygenation. The exocyclic hydroxymethyl conformation in (III) (gt) differs from that observed in (IV) and (V) (gg).  相似文献   

10.
The structure of the title compound, C22H24N2O9S2, is described. This compound consists of a sugar ring and a heterocyclic base linked unusually by an S atom. The sugar is in a 4C1 chair conformation and forms dihedral angles of 49.54 (4) and 33.42 (5)° with the thia­diazole and phen­yl rings, respectively. The S atom occupies an equatorial position of the sugar ring and lies 1.807 (2) Å out of the corresponding mean plane.  相似文献   

11.
The title compound [systematic name: 1‐(2‐deoxy‐β‐D‐erythro‐pentofuranosyl)‐4‐nitro‐1H‐pyrrolo[2,3‐b]pyridine], C12H13N3O5, forms an intramolecular hydrogen bond between the pyridine N atom as acceptor and the 5′‐hydroxy group of the sugar residue as donor. Consequently, the N‐glycosylic bond exhibits a syn conformation, with a χ torsion angle of 61.6 (2)°, and the pentofuranosyl residue adopts a C2′‐endo envelope conformation (2E, S‐type), with P = 162.1 (1)° and τm = 36.2 (1)°. The orientation of the exocyclic C4′—C5′ bond is +sc (gauche, gauche), with a torsion angle γ = 49.1 (2)°. The title nucleoside forms an ordered and stacked three‐dimensional network. The pyrrole ring of one layer faces the pyridine ring of an adjacent layer. Additionally, intermolecular O—H...O and C—H...O hydrogen bonds stabilize the crystal structure.  相似文献   

12.
In the crystal structure of the title hydrated salt, poly[(μ2‐aqua)(μ4‐1‐sulfido‐β‐D‐glucoside)potassium], [K(C6H11O5S)(H2O)]n or K+·C6H11O5S·H2O, each thioglucoside anion coordinates to four K+ cations through three of its four hydroxy groups, forming a three‐dimensional polymeric structure. The negatively charged thiolate group in each anion does not form an efficient coordination bond with a K+ cation, but forms intermolecular hydrogen bonds with four hydroxy groups, which appears to sustain the polymeric structure. The Cremer–Pople parameters for the thioglucoside ligand (Q = 0.575, θ = 8.233° and ϕ = 353.773°) indicate a slight distortion of the pyranose ring.  相似文献   

13.
The title compound [systematic name: 7‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐3,7‐dihydro‐4H‐pyrrolo[2,3‐d]pyrimidin‐4‐one], C11H13N3O4, represents an acid‐stable derivative of 2′‐deoxyinosine. It exhibits an anti glycosylic bond conformation, with a χ torsion angle of 113.30 (15)°. The furanose moiety adopts an S‐type sugar pucker 4T3, with P = 221.8 (1)° and τm = 40.4 (1)°. The conformation at the exocyclic C4′—C5′ bond of the furanose ring is ap (trans), with γ = 167.14 (10)°. The extended structure forms a three‐dimensional hydrogen‐bond network involving O—H...O, N—H...O and C—H...O hydrogen bonds. The title compound forms an uncommon hydrogen bond between a CH group of the pyrrole system and the ring O atom of the sugar moiety of a neighbouring molecule.  相似文献   

14.
The title compound 4 , i.e. 9‐chloro‐4,5‐dihydro‐2‐ethyl‐1‐(2,4,6‐trichlorophenyl)‐1H‐1,2,4‐triazolo[3,2‐d]‐[1,5]benzoxazepinium hexachloroantimonate, is a novel 6‐7‐5 tricyclic heterocycle. C18H14Cl4N3O·SbCJ6, M = 764.61, P21/c(#14), a = 13.457(4), b = 11.583(2), c = 18.992(3) Å α = 90, β = 110.11(1)°, Z = 4, V = 2780(1) Å3, Dc = 1.827 g/cc, μ (MoKα) = 19.69 cm?1, F(000) = 1488.00, T = 293 K, Rint = 0.055 for 3094 independent reflections with I>3.00σ(I). The five‐membered heterocyclic ring is nearly planar, with the trichlorophenyl ring at N(2) almost perpendicular to it. However, the seven‐membered ring is not planar, but adopts a twist‐boat conformation.  相似文献   

15.
The crystalline-state conformation of the title compound, C29H29NO9, has been established unequivocally. The R absolute configuration is observed at the 4-methoxy­amino moiety and the pyranose ring adopts essentially a perfect 4C1 chair. The torsion angle of the exocyclic hydroxy­methyl group is shown to be gauchegauche with respect to O1 and C4, respectively. The conformation along the methoxy­amino bond is consistent with that observed for calicheamicin γ1I.  相似文献   

16.
The title compound, C9H12N6O3, shows a syn‐glycosylic bond orientation [χ = 64.17 (16)°]. The 2′‐deoxyfuranosyl moiety exhibits an unusual C1′‐exo–O4′‐endo (1T0; S‐type) sugar pucker, with P = 111.5 (1)° and τm = 40.3 (1)°. The conformation at the exocyclic C4′—C5′ bond is +sc (gauche), with γ = 64.4 (1)°. The two‐dimensional hydrogen‐bonded network is built from intermolecular N—H...O and O—H...N hydrogen bonds. An intramolecular bifurcated hydrogen bond, with an amino N—H group as hydrogen‐bond donor and the ring and hydroxymethyl O atoms of the sugar moiety as acceptors, constrains the overall conformation of the nucleoside.  相似文献   

17.
The title compound, C26H21NO2S2, which consists of a benzo­thia­zole skeleton with α‐naphthyl­vinyl and tosyl groups at positions 2 and 3, respectively, was prepared by palladium–copper‐catalyzed heteroannulation. The E configuration of the mol­ecule about the vinyl C=C bond is established by the benzothiazole–naphthyl C—C—C—C torsion angle of 177.5 (4)°. The five‐membered heterocyclic ring adopts an envelope conformation with the Csp3 atom 0.380 (6) Å from the C2NS plane. The two S—C [1.751 (4) and 1.838 (4) Å] and two N—C [1.426 (5) and 1.482 (5) Å] bond lengths in the thia­zole ring differ significantly.  相似文献   

18.
2,2′‐Anhydro‐1‐(3′,5′‐di‐O‐acetyl‐β‐D‐arabinofuranosyl)uracil, C13H14N2O7, was obtained by refluxing 2′,3′‐O‐(methoxymethylene)uridine in acetic anhydride. The structure exhibits a nearly perfect C4′‐endo (4E) conformation. The best four‐atom plane of the five‐membered furanose ring is O—C—C—C, involving the C atoms of the fused five‐membered oxazolidine ring, and the torsion angle is only −0.4 (2)°. The oxazolidine ring is essentially coplanar with the six‐membered uracil ring [r.m.s. deviation = 0.012 (5) Å and dihedral angle = −3.2 (3)°]. The conformation at the exocyclic C—C bond is gauche–trans which is stabilized by various C—H...π and C—O...π interactions.  相似文献   

19.
Dorzolamide hydro­chloride [systematic name: (4S)‐trans‐4‐ethyl­ammonio‐6‐methyl‐5,6‐dihydro‐4H‐thieno[2,3‐b]thio­pyran‐2‐sulfonamide 7,7‐dioxide chloride], C10H17N2O4S2+·Cl, belongs to a class of drugs called carbonic anhydrase inhibitors. The ethyl­ammonio side chain is in an extended conformation and is protonated at the N atom, which is hydrogen bonded to the Cl anion. The dihedral angle between the planes of the thio­phene ring and the sulfonamide group is 80.7 (1)°. A comparison is made with the dorzolamide bound in human carbonic anhydrase in the solid state. Hydrogen bonding is mediated by Cl anions, resulting in indirect connectivity between the mol­ecules.  相似文献   

20.
Summary.  The structures and relative energies of fundamental conformations of cyclopenta-1,2,3-triene, cyclohexa-1,2,3-triene, cylohepta-1,2,3-triene, cycloocta-1,2,3-triene, and cyclonona-1,2,3-triene were calculated by the HF/6-31G* and MP2/6-31G*//HF/6-31G* methods. Only a C 2v symmetric planar conformation is available to cyclopenta-1,2,3-triene and cyclohexa-1,2,3-triene. The calculated energy barrier for ring inversion of the C S symmetric puckerd conformation of cyclohepta-1,2,3-triene via the planar geometry is 62.2 kJ·mol−1. The C 2 symmetric twist conformation of cycloocta-1,2,3-triene was calculated to be the most stable one. Conformational racemization of the twist form takes place via the C S symmetric half-chair geometry, which is by 60.8 kJ·mol−1 less stable than the twist conformer. The C S symmetric chair and unsymmetrical twist-boat conformations of cyclonona-1,2,3-triene were calculated to have similar energies; their interconversion takes place via an unsymmetrical low-energy (18.4 kJ·mol−1) transition state. The twist (C 2) and boat (C S) geometries of cyclonona-1,2,3-triene are higher in energy by 13.2 and 33.9 kJ·mol−1, respectively. Ring inversion in chair and twist-boat conformations takes place via a twist form as intermediate and requires 33.6 kJ·mol−1. Corresponding author. E-mail: isayavar@yahoo.com Received March 25, 2002; accepted April 4, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号