首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stability of excited superheavy nuclei (SHN) with 100 Z 134 against neutron emission and fission is investigated by using a statistical model. In particular, a systematic study of the survival probability against fission in the 1n-channel of these SHN is made. The present calculations consistently take the neutron separation energies and shell correction energies from the calculated results of the finite range droplet model which predicts an island of stability of SHN around Z = 115 and N = 179. It turn...  相似文献   

2.
探索原子核的电荷与质量极限,合成长寿命超重核是当前原子核物理研究的重要前沿问题之一。本文综述了我们近几年在超重原子核结构性质与合成机制方面取得的理论研究进展。在结构性质方面,利用处理对关联的粒子数守恒方法,基于推转壳模型,系统研究了锕系核与超镄核低激发谱,发展了多维形状约束的协变密度泛函理论并用于研究锕系核势能面和裂变位垒以及N=150同中子素中的非轴对称八极关联等。在超重核合成机制方面,系统研究了利用重离子熔合反应合成超重核的三步过程,包括俘获过程——提出了一个位垒穿透概率新公式、熔合过程——提出了一个基于动力学形变势能面的双核模型、存活过程——系统研究了激发态超重复合核存活概率等。系统研究了合成超重核的热熔合反应,得到的熔合蒸发截面与实验符合,并预言了合成119和120号超重元素的生成截面。  相似文献   

3.
The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number N = 162 or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with N = 154–172 are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of N = 162 (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving r-process nucleosynthesis.   相似文献   

4.
The recent experiments at FLNR, Dubna, demonstrated that cross-sections to produce SHEs by 48Ca-induced reactions on actinide targets increase beyond Z = 111, reach a maximum of 5 pb at Z = 114 and fall below the 1 pb level at Z = 118. A scenario is proposed to understand the findings within the frame of former experimental results of heavy-element production and theoretical predictions about the stability of the nuclides concerned. New ingredients introduced are: 1) to shift the next proton shell beyond Pb from Z = 114 to Z = 122; 2) the isotopes of the elements Z = 112 to Z = 118 are deformed and their nuclei have oblate shapes; 3) the fission barriers around the next nucleus with doubly closed shells 306184122 are larger than the neutron separation energies and reach values in the range of 10MeV. The ascent of the flat top at 306184122 is described by the proposed scenario, which likewise excludes reaching the doubly closed shell region at the top by today’s experimental methods. Communicated by T.S. Bíró  相似文献   

5.
K. P. Santhosh  R. K. Biju 《Pramana》2009,72(4):689-707
Based on the concept of cold valley in fission and fusion, the radioactive decay of superheavy280–314116 nuclei was studied taking Coulomb and proximity potentials as the interacting barrier. It is found that the inclusion of proximity potential does not change the position of minima but minima become deeper which agrees with the earlier findings of Gupta and co-workers. In addition to alpha particle minima, the other deepest minima occur for 8Be, 12,14C clusters. In the fission region two deep regions are found each consisting of several comparable minima, the first region centred on 208Pb and the second is around 132Sn. The cluster decay half-lives and other characteristics are computed for various clusters ranging from alpha particle to 70Ni. The computed half-lives for alpha decay match with the experimental values and with the values calculated using Viola-Seaborg-Sobiczewski (VSS) systematic. The plots connecting computed Q values and half-lives against neutron number of daughter nuclei were studied for different clusters and it is found that the next neutron shell closures occur at N = 162, 172 and 184. Isotopic and isobaric mass parabolas are studied for various cluster emissions and minima of parabola indicate neutron shell closure at N = 162, 184 and proton shell closure at Z = 114. Our study shows that 162276114 is the deformed doubly magic and 184298114 is the spherical doubly magic nuclei.   相似文献   

6.
We have performed shell model calculations of the half-lives and neutron-branching probabilities of the r-process waiting-point nuclei at the magic neutron number N = 82 . These new calculations use a larger model space than previous shell model studies and an improved residual interaction which is adjusted to recent spectroscopic data around A = 130 . Our shell model results give a good account of all experimentally known half-lives and Q β -values for the N = 82 r-process waiting-point nuclei. Our half-life predictions for the N = 82 nuclei with Z = 42-46 agree well with recent estimates based in the energy-density functional method.  相似文献   

7.
当前,原子核物理研究的一个重要前沿是探索原子核的电荷与质量极限,研究超重原子核与超重元素的性质,以及合成超重原子核。20世纪60年代,基于量子壳效应,理论预言质子数为114、中子数为184的原子核及其相邻核具有较长的寿命,甚至可能是稳定的,形成一个超重稳定岛。这个理论预言促进了重离子加速器及相关探测设备的建造,推动了重离子物理的发展。到目前,已经合成到了118号元素,填满了元素周期表的第7行。然而,合成更重的超重元素或包含更多中子的超重原子核面临着很多挑战,需要理论与实验密切结合,探索超重原子核的性质与合成机制,以登上超重稳定岛。文章概要评述超重原子核与新元素研究。首先介绍超重原子核与超重元素研究的背景及理论预言,包括超重核存在的根源、理论预言的概况等。之后简要给出实验合成超重核取得的主要进展和新元素命名情况。关于合成更重的超重元素面临的挑战,文章将针对利用重离子熔合蒸发反应合成超重核的截面低、所合成的超重核缺中子等情况展开讨论。最后评述近年来超重原子核结构性质、衰变、裂变与合成机制等方面的理论研究进展,包括超重核区的幻数和超重岛的位置,超重核的稳定性,利用重离子熔合蒸发反应合成超重核的三步过程及其复杂性,利用多核子转移合成超重核的探索,等等。The exploration of charge and mass limits of atomic nuclei and the synthesis of long-lived or stable superheavy nuclei (SHN) are at the frontier of modern nuclear physics. In the 1960s, based on the stability originating from quantum shell effects, the possible existence of an island of stability around 298114 was predicted. This prediction advanced the construction of heavy ion accelerators and detectors and the development of heavy ion physics. So far, superheavy elements (SHE) with Z up to 118 have been synthesized via heavy ion fusion reactions in laboratories. Recently the IUPAC/IUPAP Joint Working Party (JWP) concluded that criteria for the discovery of new elements have been met for those with Z=113, 115, 117 and 118. Therefore the seventh period of the periodic table of elements is completed. To synthesize even heavier elements or more neutron-rich SHN by using heavy ion fusion reactions, one confronts many challenges. More efforts should be made to study the properties of SHN both experimentally and theoretically. In this short review on the study on SHN and SHE, we will first introduce the background and theoretical predictions of SHN, including the origin of the possible existence of SHN and the predicted island of stability of SHN, etc. Then we will present progresses made up to now concerning the synthesis of SHN and the naming of the four new elements. As for the challenges nuclear physicists confront in synthesizing even heavier SHEs, we will detail those connected with heavy ion fusion-evaporation reactions, namely, the tiny cross sections to produce SHN and the fact that only neutron-deficient SHNs can be synthesized. Finally we will discuss some theoretical progresses on the study of SHN, including the structure of SHN and proton and neutron magic numbers after 208Pb, the stability and the synthesis mechanism of SHN as well as what we should focus on in the future.  相似文献   

8.
Changes in mean square (ms) nuclear charge radii of Ar isotopes across the 1f7/2 shell are studied by fast-beam collinear laser spectroscopy using an ultra-sensitive detection method based on optical pumping and state-selective collisional ionization. The new data set on Ar, in combination with the known charge radii of K, Ca and Ti in the ν1f7/2 shell, offers an opportunity to obtain a more complete overview of nuclear radii trends around the proton shell closure Z = 20 and between the neutron shell closures N = 20 and N = 28.  相似文献   

9.
An analysis of the shell energy in terms of cluster contributions shows that the compound neutron number N=132 together with the (Z = 50)-substructure determines the border between symmetric and asymmetric fission in the Radium region. Possible experimental tests of this hypothesis are discussed.  相似文献   

10.
The high energy γ-ray emission accompanying the spontaneous fission of 252Cf has been measured in coincidence with individual fission fragments selected by discrete γ-ray transitions. The enhancement of the γ-ray emission probability in the energy range Eγ= 3–8 MeV has been observed for the fission fragments in the region of nearly symmetric mass splitting, confirming results reported in previous investigations. The γ-γ coincidence technique employed in the present work clearly demonstrate that the major contribution to this enhancement is caused by the fission channels where one fragment is near to the N= 82 or Z= 50 shell closures. The high energy γ-ray emission probability does not show any significant dependence on the number of neutrons emitted in the fission process, supporting the hypothesis that high energy γ-rays are mainly emitted from the fragments after the neutron evaporation. Received: 22 December 1998  相似文献   

11.
The systematic behavior of 21+ and 41+ state energies in GdXe nuclei, below the neutron N = 82 shell gap, are examined in terms of the product of numbers of valence proton and neutron particles, NpNn. To produce a smooth dependence of these spectroscopic quantities as functions of NpNn, requires that the Z = 64 shell gap disappears for neutron numbers less than, or approximately equal to, N = 78.  相似文献   

12.
A survey of experimental results obtained at GANIL (Caen, Prance) on the study of the properties of very neutron-rich nuclei (Z = 6–20, A = 20–60) near the neutron drip line and resulting in an appearance of further evidence for the new magic number N = 16 is presented. Very recent data on mass measurements of neutron-rich nuclei at GANIL and some characteristics of binding energies in this region are discussed. Nuclear binding energies are very sensitive to the existence of nuclear shells and together with the measurements of instability of doubly magic nuclei 10He and 280 they provide information on changes in neutron shell closures of very neutron-rich isotopes. The behaviour of the two-neutron separation energies S2n derived from mass measurements gives a very clear evidence for the existence of the new shell closure N = 16 for Z = 9 and 10 appearing between 2s1/2 and ld3/2 orbitals. This fact, strongly supported by the instability of C, N and O isotopes with N > 16, confirms the magic character of N = 16 for the region from carbon up to neon while the shell closure at N = 20 tends to disappear for Z ≤ 13. Decay studies of these hardly accessible short-lived neutron-rich nuclei from oxygen to silicon using the in-beam γ-ray spectroscopy are also reported.  相似文献   

13.
The fission fragment mass distribution followed by neutron emission is studied for the 238U(18O,f) reaction using the asymmetric two-center shell model. Within the thermodynamic approach, excitation energy carried by the compound nucleus is dissipated in the emission of a pair of neutrons in several consecutive steps. Therefore, we have considered 2–12 (in step of 2) neutron emission channels in our formalism. The mass distribution corresponding to 8-neutron emission channel compares reasonably well with the experimental data. The observed fine structure dips corresponding to shell closure (Z = 50 and N = 82 of individual fission fragment arise mainly due to shell structure in the mass parameters. However, an exact location and magnitude of the dip at A = 124 in the mass distribution depends on how the temperature modifies masses and, also, on the precise information of pre- and post-neutron emission data. This suggests a possible importance of extending these calculations to get new insight into an understanding of the dynamical behaviour of fragment formation in the fission process.  相似文献   

14.
The last version of the analytical superasymmetric fission model is applied to study cold fission processes. Strong shell effects are present either in one or both fission fragments. A smooth behaviour is observed when the proton or the neutron numbers are changed by four units. IncreasingZ andN, in the transuranium region, a sharp transition from asymmetry with a large peak-to-valley ratio to symmetry atZ=100 and/orN=164 is obtained. The transition toward asymmetry at higherZ andN is much smoother. The most probable cold fission light fragments from234U,236U,239Np and240Pu are100Zr,104Mo,106Mo and106Mo, respectively, in good agreement with experimental data. The unified treatment of alpha decay, heavy ion radioactivities and cold fission is illustrated for234U — the first nucleus in which all three groups have been already observed.  相似文献   

15.
Limiting values of last-nucleon binding energies are available from measured reaction energies of induced transformations satisfying the selection rule ΔA=0, ±1 (A=mass number) in about 140 cases. In 14 cases upper and lower limiting values are known separately, and these agree in each case within the limits of experimental error. Taking the other 126 values as ‘true’ (rather than limiting) values, and using information concerning total energies of β-disintegration, the number of last-nucleon binding energies which are reasonably well determined is increased to more than 600. These values are tabulated, and discussed in relation to the v. Weizsäcker mass formula. Apart from certain anomalies which are treated individually, the discussion brings out the effect of α-unit structure in light nuclei, diminishing in importance to become almost negligible beyond A=40, and yields mean values for nucleon-parity dependent terms in the range A~215. The recovery of ‘normal’ last-nucleon binding energy after completion of a closed shell is followed in detail over the range 126ˇ-Nˇ-136 (N=neutron number) and somewhat less closely over the range 82ˇ-Zˇ-92 (Z=proton number).  相似文献   

16.
Clustering in nuclei is discussed putting emphasis on the investigation of the role of nuclear clustering in neutron-rich nuclei. The subjects we discuss include clustering in neutron-rich Be, B and C isotopes, clustering in the island of inversion around N = 20, and clustering in the region with A ≈ 40. Be isotopes present us typical examples of clustering in neutron-rich nuclei not only in their ground band states but also in their excited band states, for which we show the analyses based on antisymmetrized molecular dynamics (AMD). Clustering in Be isotopes near neutron dripline is intimately related to the breaking of the neutron magic number N = 8. In this connection we report our study about the possible relation of the clustering with the breaking of the neutron magic number N = 20 in the island of inversion including 32Mg and 30Ne. Our discussion is not only about the positive parity states but also about negative parity states. Recently in the latter half of sd shell and in the pf shell many excited rotational bands with large deformation have been found to exist. Since the first excited K π = 0+ and K π = 0- bands in 40Ca have been regarded as constituting inversion doublet bands having the 36Ar + α structure, and since the first excited K π = 0- band in 44Ti has been concluded to have 40Ca + α structure through the α transfer reaction and by using the unique α optical potential on 40Ca, it is important to investigate the role of α clustering in these newly-found rotational bands with large deformation. We will report the AMD study about this problem.  相似文献   

17.
自发裂变和α衰变是影响超重核稳定性的两个主要因素。为了探索270Ds附近的长寿命的超重核,系统地计算了电荷数在104 ≤ Z ≤ 112范围内的α衰变与自发裂变之间的竞争。采用推广的液滴模型和唯象的解析公式计算了α衰变半衰期。基于包括壳效应和同位旋效应的WKB近似方法估算了相同超重核的自发裂变半衰期,进而预测了未知超重核274-276,279Cn与267-269Ds的衰变模式。The stability of superheavy nuclei (SHN) is controlled mainly by spontaneous fission and α decay processes. To investigate whether long lived SHN could really exist around 270Ds, the competition between α decay and spontaneous fission in the region 104 ≤ Z ≤ 112 are studied systematically. The α decay half-lives are investigated by employing a generalized liquid drop model (GLDM) and phenomenological analytical formula. Calculations of spontaneous fission half-lives for the same SHN are carried out based on the Wenzel-Kramers-Brillouin(WKB) approximation with both the shell effect and the isospin effect included. Decay modes are predicted for the unknown nuclei 274-276,279Cn and 267-269Ds.  相似文献   

18.
A large set of experimental observables for the 232Th(α, xnf)reaction was analyzed theoretically within the dynamic-statistical approach, making it possible to interconsistently consider the manifestation of nuclear viscosity, the double-humped structure of the fission barrier, and the phenomenon of shell effect damping with temperature. Analyses were performed for the energy dependence of the finite lifetime effect in the investigated reaction, obtained using the crystal blocking technique; the fission probability isotopes produced in this reaction during the development of a neutron emission cascade; and the anisotropy of angular distributions of fission fragments. It is shown that this analysis allows us to obtain information regarding nuclear viscosity and its energy dependence at relatively low excitation energies (<30 MeV).  相似文献   

19.
The fusion reactions are studied in the central collisions 82Se+ + 134Ba and 82Se+ + 138Ba by the improved isospin-dependent quantum molecular-dynamics model, where the nucleus 138Ba has a closed neutron shell N = 82 . Comparing the shell correction energies and fusion probabilities of these two reactions with the ones of other asymmetric or more symmetric reaction systems that form the same compound nuclei, we find the dependence of the fusion reaction on the nuclear shell structure of the colliding nuclei. The experimental data of the fusion probabilities are described well by the present model. The result suggests that the neutron shell closure N = 82 promotes fusion.  相似文献   

20.
From a shell model analysis of high-spin states in neutron deficient nuclei above146Gd we have derived the ground state masses of theN=82 and 83 isotones of Eu, Tb, Dy, Ho, and Er. The results can be used to calculate the energies of aligned multiparticle yrast configurations. They also link ten α-decay chains to the nuclei with known masses, providing many new absolute mass values which are compared with predictions. An examination of the two-proton separation energies atN=82 shows an 0.5 MeV break in the nuclear mass surface atZ=64.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号