首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The new heterometallic complex {μ-1,3,5-[CH(pz)2]3C6H3}[Re(CO)3Br][Pt(p-tolyl)2]2 has been prepared by reaction of 1 equiv. of the dimer [Pt(p-tolyl)2(μ-SEt2)]2 with the monometallic rhenium precursor {1,3,5-[CH(pz)2]3C6H3}Re(CO)3Br, where 1,3,5-[CH(pz)2]3C6H3 is the tritopic, arene-linked bis(pyrazolyl)methane ligand 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene. Similarly, the heterometallic complex {μ-1,3,5-[CH(pz)2]3C6H3}[Re(CO)3Br]2[Pt(p-tolyl)2] has been made by the reaction of the dirhenium compound {μ-1,3,5-[CH(pz)2]3C6H3}[Re(CO)3Br]2 and one-half of an equivalent of [Pt(p-tolyl)2(μ-SEt2)]2. X-ray crystallographic studies of the new compounds reveal significant noncovalent interactions in their molecular and supramolecular structures.  相似文献   

2.
The reaction between Fe[C5H4CH(pz)2]2 (pz = pyrazolyl ring) and two equivalents of Re(CO)5Br in refluxing toluene produces Fe[C5H4CH(pz)2Re(CO)3Br]2 (1) in high yield. A similar reaction with a ligand/rhenium ratio of slightly greater than one yields mainly 1 and a low yield of Fe[C5H4CH(pz)2Re(CO)3Br][C5H4CH(pz)2] (2). The compound H2C(pz)2Re(CO)3Br (3) was prepared by the reaction of H2C(pz)2 and Re(CO)5Br. Compounds 1 and 2 show a reversible oxidation at ca. 0.9 V (Ag/AgCl) that can be assigned to the oxidation of the ferrocene moiety and one irreversible oxidation at ca. 1.4 V assigned to the oxidation of the rhenium metal center. The solid-state structures of 1 · CH3NO2, 1 · 2CH3NO2, 1 · 2CH3CN and 2 · 1/2Et2O · 1/2C3H6O have been determined, with 1 · 2CH3NO2 and 1 · 2CH3CN being isomorphous. All four are organized into supramolecular structures by the interactions of the acidic hydrogens of the pyrazolyl and methine groups with either the bromine atoms or carbonyl ligand oxygen atoms, and in 2 the lone pairs on the uncomplexed bis(pyrazolyl)methane units.  相似文献   

3.
The reactions of K[HB(pz)3] (pz = pyrazol-1-yl) with the coordinatively unsaturated σ-vinyl complexes [Ru(CRCHR)Cl(CO)(PPh3)2] (R = H, Me, C6H5) proceed with loss of a chloride and a phosphine ligand to provide the compounds [Ru(CRCHR)(CO)(PPh3){HB(pz)3}] in high yield. Similar treatment of the complex [Ru(C6H4Me-4)Cl(CO)(PPh3)2] leads to the related σ-aryl derivative [Ru(C6H4Me-4)(CO)(PPh3){HB(pz)3}] whilst the complex [RuClH(CO)(PPh3)3] treated successively with diphenylbutadiyne and K[HB(pz)3] provides the unusual derivative [Ru{C(CCPh)CHPh}(CO)(PPh3){HB(pz)3}].  相似文献   

4.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

5.
The crystal structures of fac‐(acetonitrile‐κN)(2‐{[3,5‐bis(4‐methoxyphenyl)‐2H‐pyrrol‐2‐ylidene‐κN1]amino}‐3,5‐bis(4‐<!?tlsb=0.2pt>methoxyphenyl)‐1H‐pyrrol‐1‐ido‐κN1)tricarbonylrhenium(I)–hexane–acetonitrile (2/1/2), [Re(C36H30N3O4)(CH3CN)(CO)3]·0.5C6H14·CH3CN, (2), and fac‐(2‐{[3,5‐bis(4‐methoxyphenyl)‐2H‐pyrrol‐2‐ylidene‐κN1]amino}‐3,5‐bis(4‐methoxyphenyl)‐1H‐pyrrol‐1‐ido‐κN1)tricarbonyl(dimethyl sulfoxide‐κO)rhenium(I), [Re(C36H30N3O4)(C2H6OS)(CO)3], (3), at 150 K are reported. Both complexes display a distorted octahedral geometry, with a fac‐Re(CO)3 arrangement and one azadipyrromethene (ADPM) chelating ligand in the equatorial position. One solvent molecule completes the coordination sphere of the ReI centre in the remaining axial position. The ADPM ligand shows high flexibility upon coordination, while retaining its π‐delocalized nature. Bond length and angle analyses indicate that the differences in the geometry around the ReI centre in (2) and (3), and those found in three reported fac‐Re(CO)3–ADPM complexes, are dictated mainly by steric factors and crystal packing. Both structures display intramolecular C—H...N hydrogen bonding. Intermolecular interactions of the Csp2—H...π and Csp2—H...O(carbonyl) types link the discrete monomers into extended chains.  相似文献   

6.
The seven-coordinate rhenium(III) complex cation [ReIII(dhp)(PPh3)2]+ was isolated as the iodide salt from the reaction of cis-[RevO2I(PPh3)2] with 2,6-bis(2-hydroxyphenyliminomethyl)pyridine (H2dhp) in ethanol. In the complex fac-[Re(CO)3(H2dhp)Br], prepared from [Re(CO)5Br] and H2dhp in toluene, the H2dhp ligand acts as a neutral bidentate N,N-donor chelate. The complexes were characterized by elemental analysis, infrared and 1H NMR spectroscopy and X-ray crystallography.  相似文献   

7.
Reactions of the flexible α,ω-bis(pyrazol-1-yl) compounds 1,2-bis(pyrazol-1-yl)ethane (L1), 1,8-bis(pyrazol-1-yl)-n-octane (L2), bis[2-(pyrazol-1-yl)ethyl]ether (L3) and bis[2-(pyrazol-1-yl)ethyl]thioether (L4) with precursor organometallic platinum complexes ([(PtBr2Me2)n], [(PtIMe3)4] and [(PtMe2(cod)]/I2) are described herein. The spectroscopic characterization of the platinum(IV) products of these reactions [PtBr2Me2{pz(CH2)mpz}], m = 2 (1) or 8 (2), [PtI2Me2{pz(CH2)2pz}] (3), [PtMe3(pzCH2CH2OCH2CH2pz)][BF4] (4) and [PtMe3(pzCH2CH2SCH2CH2pz)][CF3SO3] (5), where ‘pz’ is pyrazol-1-yl, is discussed. Furthermore, solid state structures of 1, a complex with a seven-membered chelate ring, and 4, a complex bearing the neutral κ2N,N′,κO ligand bis[2-(pyrazol-1-yl)ethyl]ether (L3) are reported.  相似文献   

8.
The synthesis of new tripodal nitrogen ligands derived from tris(pyrazolyl)methane (TpmR, R = H, tBu, Ph in 3‐position) is described. After deprotonation of the parent tris(pyrazolyl)methane TpmR, the carbanion reacts readily with ethylene oxide to yield the 3,3,3‐tris(3′‐substituted pyrazolyl)propanol ligands[(3‐Rpz)3CCH2CH2OH, R = H, tBu, Ph, 1a – c ]. These ligands can be easily derivatised at the alcohol function. Microwave‐assisted reactions of these ligands and [Re(CO)5Br] yields the complex [( 1a )Re(CO)3]Br ( 4 ) in the case of ligand 1a , whereas in the case of the substituted ligands 1b and 1c degradation was observed. The degradation products are identified as [(HpzR)2Re(CO)3Br] [R = tBu ( 7b ), Ph ( 7c )]. These complexes were also prepared directly from [Re(CO)5Br] and the corresponding pyrazoles by microwave‐assisted synthesis. The Re(CO)3 complexes 4 and [( 1a )Re(CO)3]OTf ( 5 ) are water‐soluble. The structures of 5· H2O and [{(pz)3CCH2CH3}Re(CO)3]OTf · 1.5H2O · 1/2CH3CN ( 6· 1.5H2O · 1/2CH3CN) as well as the structure of 7b have been elucidated by X‐ray crystallography.  相似文献   

9.
Novel rhenium(I) tricarbonyl complexes have been prepared by reactions of (Et4N)2[Re(CO)3Br3] with acetylpyridine benzoylhydrazone, Hapbhyd, di(2‐pyridyl)ketone benzoylhydrazone, Hpy2bhyd, bis(2‐pyridine)ketone, py2CO, and pyridinealdehyde terephtalaldehydebishydrazone, pytehyd. The ligands remain protonated when no supporting base is added and the following complexes have been isolated: [Re(CO)3Br(Hapbhyd)], [Re(CO)3Br(Hpy2bhyd‐py, hyd)], [Re(CO)3Br(Hpy2bhyd‐py1, py2)], [Re(CO)3Br(py2CO‐N, N)] and [Re(CO)3Br(pytehyd)]. Addition of triethyl amine results in deprotonation of Hapbhyd and the formation of [Re(CO)3(OH2)(apbhyd)], whereas Hpy2bhyd is hydrolysed and a rhenium complex with the monoanionic bis(2‐pyridyl)hydroxymethanolato ligand, {py2C(OH)O}, is formed. The same compound, [Re(CO)3{py2C(OH)O}], is obtained when triethyl amine and water are added to a mixture of (Et4N)2[Re(CO)3Br3] and py2CO. The air‐stable products have been studied by spectroscopic methods and X‐ray crystallography.  相似文献   

10.
The reaction of the dimeric bis(germylene) [Ge{3,5‐(CF3)2pz}2]2 ( 2 ) with protic molybdenum hydride [Mo(H)Cp(CO)3] yielded two different products. In diethyl ether the divalent germylene readily inserts into the Mo–H σ‐bond and the product of the oxidative addition, [Ge(H){Mo}(pz)2] ( 4 ) (with pz = 3,5‐disubstituted pyrazole, 3,5‐(CF3)2pz; {Mo} = [MoCp(CO)3]), was isolated featuring a germanium(IV) hydride moiety. In toluene an interesting “cascade” reaction takes place furnishing a bis‐metal substituted digermane [{Mo}(H)(pz)Ge–Ge(pz)2{Mo}]. Although the detailed mechanism of the reaction remains the subject of speculation it seems likely that a germylene, [GeII(pz){Mo}], inserts into the germanium(IV) hydrogen bond of [Ge(H){Mo}(pz)2] under formation of a germanium‐germanium bond, which is a rare reaction behaviour.  相似文献   

11.
[NEt4]2[Re(CO)3Br3] and [NEt4]2[Tc(CO)3Cl3] react with trimethylsilyltriphenylphosphoraneimine, Me3SiNPPh3, under exchange of the bromo ligands and the formation of cationic [M(CO)3(HNPPh3)3]+ complexes (M = Re, Tc). The required protons are abstracted from the solvent CH2Cl2. The steric bulk of the organic ligands causes a marked distortion of the established coordination polyhedra from an idealized octahedron with bond angles between neighbouring donor atoms between 81.81(8)° and 96.66(8)°. The reaction of [NEt4]2[Re(CO)3Br3] with Me3SiNP(Ph2)CH2PPh2 in CH2Cl2 yields the neutral complex [Re(CO)3Br{HNP(Ph2)CH2PPh2)], which contains a neutral, chelate‐bonded (diphenylphosphinomethyl)diphenylphosphoraneimine ligand. A similar reaction with the bifunctional phosphoraneimine Me3SiNP(Ph2)CH2(Ph2)PNSiMe3 gives only small amounts of a binuclear rhenium(I) complex of the composition [{Re(CO)3Br2}2(HNP(Ph2)CH2(Ph2)PNH)]2‐, whereas the major amount of the bis‐phosphoraneimine undergoes an intramolecular rearrangement to yield [H2NP(Ph2)NP(Ph2)CH3]Br. An X‐ray structure analysis shows a widespread delocalization of electron density over the central part of the cation.  相似文献   

12.
The pentacarbonylhalogene complexes [XM(CO)5] (M = Mn, Re; X = Cl, Br) ( 1a – 2b ) react with 2,2‐dimethylaziridine by thermally induced substitution reaction to give the neutral bis‐aziridine complexes [M(X)(CO)3Az2] (Az = N(H)C2H2Me2) ( 3a – 4b ). As a result of the X‐ray structure analyses, the metal atoms are octahedrally configurated in the facial arrangement; the intact three‐membered rings coordinate through their distorted tetrahedrally configurated N atoms. All compounds 3a – 4b are stable with respect to the directed thermal alkene elimination to give the corresponding nitrene complexes (CO)4(X)M=NH; their IR, 1H and 13C{1H} NMR, and MS spectra are reported and discussed.  相似文献   

13.
The pallada(II)cyclopentane reagent [Pd(C4H8{(pz)3BH}], generated by addition of potassium tris(pyrazol-1-yl)borate to the tetramethylethylenediamine analogue, reacts with water or hydrogen peroxide to give hydroxopalladium(IV) complex Pd(OH)(C4H8){(pz)3BH}. Similar oxidation reactions occur with phenyliodonium dichloride, bromine and iodine to give PdX(C4H8){(pz)3BH} (X = Cl, Br, I). The hydroxoplatinum(IV) complex Pt(OH)Me2{(pz)3BH} has been obtaine reaction of [PtMe2(SEt2)]2 with K[(pz)3BH], followed by addition of water, and its structure determined by an X-ray diffraction study.  相似文献   

14.
Hydrotris(3, 5‐dimethylpyrazol‐1‐yl)borate and hydrotris(3‐phenylpyrazol‐1‐yl)borate decompose during reactions with [ReOCl3(PPh3)2] and [NEt4]2[Re(CO)3Br3], respectively. The generated pyrazole ligands form complexes with the rhenium(V) oxo and the rhenium(I ) tricarbonyl cores. X‐ray crystal structures of the oxo‐bridged dimer [Cl(PPh3)(O)Re(μ‐O)(μ‐Me2pz)2Re(O)(HMe2pz)Cl] ( 1 ) and [Re(CO)3(HPhpz)2(Phpz)] ( 2 ) (HMe2pz = 3, 5‐dimethylpyrazole, HPhpz = 3‐phenylpyrazole) show that the substituted pyrazoles can readily deprotonate and act as monodentate or bridging anionic ligands. Re‐N bond lengths between 2.09 and 2.14Å have been observed for the bridging and between 2.12 and 2.23Å for the terminal pyrazole ligands.  相似文献   

15.
bis(alkoxycarbonyl) complexes of platinum of the type [Pt(COOR)2L] [L = 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), l,4-bis(diphenylphosphino)butane (dppb), 1,1'-bis(diphenylphosphino)ferrocene (dppf) or 1,2-bis-(diphenylphosphino)benzene (dpb); R = CH3, C6H5 or C2H5] were obtained by reaction of [PtCl2L] with carbon monoxide and alkoxides. Palladium and nickel complexes gave only carbonyl complexes of the type [M(CO)L] or [M(CO)2L]. The new complexes were characterized by chemical and spectroscopic means. The X-ray structure of [Pt(COOCH3)2(dppf] · CH3OH is also reported. The reactivity of some alkoxycarbonyl complexes was also investigated.  相似文献   

16.
Reactions of (NEt4)2[Re(CO)3Br3] with N‐heterocyclic thiols such as 2‐mercaptobenzimidazole (H2Sbenzim), 2‐mercaptothiazoline (HSthiaz), or 5‐mercapto‐1‐methyltetrazole (HSmetetraz) give rhenium(I) complexes of various compositions: (NEt4)[Re(CO)3Br2(H2Sbenzim)], [Re(CO)3(HSthiaz)3]Br, and (NEt4)[Re2(CO)6(μ‐S‐Smetetraz‐κS)(μ‐N,S‐Smetetraz‐κS,N)2]. Corresponding reactions with 2‐mercaptopyridine (HSpy) and bis(2‐pyridine)diselenide [(Sepy)2] did not give defined products in reasonable yields, whereas [Re(CO)5Br] reacts with HSpy and (Sepy)2 with formation of [Re(CO)3(HSpy)3]Br and [Re2(CO)6(Sepy)2], respectively. All reactions were performed without the addition of a supporting base and the sulfur‐containing organic ligands are coordinated in their thione forms with the exception of Smetetraz in its μS‐bridging coordination mode in (NEt4)[Re2(CO)6(μ‐S‐Smetetraz‐κS)(μ‐N,S‐Smetetraz‐κS,N)2], which can be regarded as thiolate. The bonding mode of the selenium containing ligands in the dimeric compound [Re2(CO)6(Sepy)2] (C–Se distance: 1.93 Å) can also best be described as selenolate. The products are stable on air at an ambient temperature. They were studied spectroscopically and by X‐ray diffraction.  相似文献   

17.
Reaction of [Re2(CO)8(MeCN)2] with 1,8-bis(diphenylphosphino)naphthalene (dppn) afforded three mono-rhenium complexes fac-[Re(CO)311-PPh2C10H6)(PPh2H)] (1), fac-[Re(CO)3111-(O)PPh2C10H6(O)PPh(C6H4)}] (2) and fac-[ReCl(CO)32-PPh2C10H6PPh2)] (3). Compounds 1-3 are formed by Re-Re bond cleavage and P-C and C-H bond activation of the dppn ligand. Each of these three complexes have three CO groups arranged in facial fashion. Compound 1 contains a chelating cyclometalated diphenylnaphthylphosphine ligand and a terminally coordinated PPh2H ligand. Compound 2 consists of an orthometalated dppn-dioxide ligand coordinated in a κ111-fashion via both the oxygen atoms and ortho-carbon atom of one of the phenyl rings. Compound 3 consists of an unchanged chelating dppn ligand and a terminal Cl ligand. Treatment of [Mn2(CO)8(MeCN)2] with a slight excess of dppn in refluxing toluene at 72 °C, gave the previously reported [Mn2(CO)8(μ-PPh2)2] (4), formed by cleavage of C-P bonds, and the new compound fac-[MnCl(CO)32-PPh2C10H6PPh2)] (5), which has an unaltered chelating dppn and a terminal Cl ligand. In sharp contrast, reaction of [Mn2(CO)8(MeCN)2] with slight excess of dppn at room temperature yielded the dimanganese [Mn2(CO)91-PPh2(C10H7)}] (6) in which the diphenylnaphthylphosphine ligand, formed by facile cleavage of one of the P-C bonds, is axially coordinated to one Mn atom. Compound 6 was also obtained from the reaction of [Mn2(CO)9(MeCN)] with dppn at room temperature. The XRD structures of complexes 1-3, 5, 6 are reported.  相似文献   

18.
Bis(cyclopentadienyl)methane-bridged Dinuclear Complexes, V[1]. – Heteronuclear Co/Rh-, Co/Ir-, Rh/Ir-, and Ti/Ir Complexes with the Bis(cyclopentadienyl)methane Dianion as Bridging Ligand* The lithium and sodium salts of the [C5H5CH2C5H4]- anion, 1 and 2 , react with [Co(CO)4I], [Rh(CO)2Cl]2, and [Ir(CO)3Cl]n to give predominantly the mononuclear complexes [(C5H5-CH2C5H4)M(CO)2] ( 3, 5, 7 ) together with small amounts of the dinuclear compounds [CH2(C5H4)2][M(CO)2]2 ( 4, 6, 8 ). The 1H- and 13C-NMR spectra of 3, 5 , and 7 prove that the CH2C5H5 substituent is linked to the π-bonded ring in two isomeric forms. Metalation of 5 and 7 with nBuLi affords the lithiated derivatives 9 and 10 from which on reaction with [Co(CO)4I], [Rh(CO)2Cl]2, and [C5H5TiCl3] the heteronuclear complexes [CH2(C5H4)2][M(CO)2][M′(CO)2] ( 11–13 ) and [CH2(C5H4)2]-[Ir(CO)2][C5H5TiCl2] ( 17 ) are obtained. Photolysis of 11 and 12 leads almost quantitatively to the formation of the CO-bridged compounds [CH2(C5H4)2][M(CO)(μ-CO)M′(CO)] ( 14, 15 ). According to an X-ray crystal structure analysis the Co/Rh complex 14 is isostructural to [CH2(C5H4)2][Rh2(CO)2(μ-CO)] ( 16 ).  相似文献   

19.
Preparation of Halogeno Pyridine Rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl; n = 1?3) Crystal Structures of trans-[(C4H9)4N][ReBr4(Py)2], mer-[ReCl3(Py)3], and mer- [ReBr3(Py)3] The mixed halogeno-pyridine-rhenates(III), [ReX6?n(Py)n](3?n)? (X = Br, Cl), n = 1?3, have been prepared for the first time by reaction of the tetrabutylammoniumsalts (TBA)2[ReX6] (X = Br, Cl) in pyridine with (TBA)BH4 and separation by chromatography on Al2O3. Apart from the monopyridine complexes only the trans and mer isomers are formed from the bis-and tris-pyridine compounds. The X-ray structure determinations of the isotypic neutral complexes mer- [ReX3(Py)3] (monoclinic, space group P 21/n, Z = 4; for X = Cl: a = 9,1120(8), b = 12,5156(14), c = 15,6100(13) Å, β = 91,385(7)°; for X = Br: a = 9,152(5), b = 12,852(13), c = 15,669(2) Å, β = 90,43(2)°) reveal, due to the stronger trans influence of pyridine compared with Cl and Br, that the Re? X distances in asymmetric Py? Re? X3 axes with ReCl3 = 2,397 Å and ReBr3 = 2,534 Å are elongated by 1,3 and 1% in comparison with symmetric X1? Re? X2 axes with ReCl1 = ReCl2 = 2,367 Å and ReBr1 = 2,513 and ReBr2 = 2,506 Å, respectively. The Re? N bond lengths are roughly equal with 2,12 Å. Trans-(TBA)[ReBr4(Py)2] crystallizes triclinic, space group P1 , a = 9,2048(12), b = 12,0792(11), c = 15,525(2) Å, α = 95,239(10), β = 94,193(11), γ = 106,153(9)°, Z = 2. The unit cell contains two independent but very similar complex anions with approximate D2h(mmm) point symmetry.  相似文献   

20.
The title mol­ecule, [Mo{P(C6H5)2(C6H4F)}(HNC5H10)(CO)4] or [Mo(C18H14FP)(C5H11N)(CO)4], has irregular octahedral geometry about the Mo atom. The mol­ecules form a complicated hydrogen‐bonded network comprising C—H?O, C—H?F and C—H?π hydrogen bonds and π–π interactions. The C—H?π and π–π interactions form chains containing C—H?π/π–π dimers linked via C—H?π interactions and the chains are linked into a three‐dimensional network via C—H?O and C—H?F hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号