首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of palladium complexes (C1-C7) have been prepared by the reaction of PdCl2(CH3CN)2 with 2-methoxycarbonyl-6-iminopyridines, L1-L7. The 2-methoxycarbonyl-6-iminopyridines and their complexes were fully characterized by FT-IR, NMR spectra and elemental analysis. Structures of C1, C2, C4, C5 and C6, C7 were determined by X-ray crystallography, and these complexes fold slightly distorted square planar structures around palladium coordinated with two nitrogen atoms and two chlorides. These palladium complexes exhibited moderate catalytic activities for ethylene dimerization and/or polymerization in the presence of methylaluminoxane, and showed remarkable catalytic activity for norbornene polymerization. The catalytic behaviors of these complexes were highly affected by both the ligand employed and reaction conditions.  相似文献   

2.
A series of 2-(1-aryliminoethylidene)quinolines (L) were synthesized and used as bidentate N^N ligands in coordinating with metal (cobalt and iron) chlorides to form complexes of the type LMCl2, cobalt(II) (Co1-Co5) and iron(II) (Fe1-Fe5). All organic compounds and metal complexes were fully characterized, and the molecular structures of the representative complexes Co3·DMF and Fe4·DMF were confirmed as distorted bipyramidal geometry at the metal by single-crystal X-ray diffraction. Upon activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO) under 10 atm ethylene, all complexes showed high activities in ethylene dimerization with activities of up to 1.82 × 106 g mol−1 (Co) h−1 and 5.89 × 105 g mol−1 (Fe) h−1, respectively.  相似文献   

3.
A series of 2-(1-isopropyl-2-benzimidazolyl)-6-(1-aryliminoethyl)pyridyl metal complexes [iron (II) (1a-6a), cobalt (II) (1b-6b) and nickel (II) (1c-6c)] were synthesized and fully characterized by elemental and spectroscopic analyses. Single-crystal X-ray diffraction analyses of five coordinated complexes 5a, 3b, 5b, 1c and 2c reveal 5a and 5b as distorted trigonal-bipyramidal geometry, and 3b, 1c and 2c as distorted square pyramidal geometry. All complexes performed ethylene reactivity with the assistance of various organoaluminums. The iron complexes displayed good activities in the presence of MAO and MMAO. Upon activated by Et2AlCl, the cobalt analogues showed moderate ethylene reactivity, while the nickel analogues exhibited relatively higher activities.  相似文献   

4.
Series of 2-benzoxazole-1,10-phenanthrolines (L1-L4) and 2-oxazoline-1,10-phenanthrolines (L5-L8) were synthesized and used as tridentate N^N^N ligands in coordinating with metal (nickel, cobalt or iron) chlorides. Their metal complexes, nickel(II) (Ni1-Ni8), cobalt(II) (Co1-Co8) and iron(II) (Fe1-Fe8), were characterized by elemental and IR spectroscopic analyses. The molecular structures of the ligand L2 and the complexes Ni3, Co1, Co3 and Fe2 have been determined by the single-crystal crystallography. The nickel complex Ni3 and iron complex Fe2 display an octahedral geometry, whereas cobalt complex Co1 is with a distorted bipyramidal geometry and Co3 as square pyramidal geometry. At 10 atm ethylene, all the complexes showed good activities in ethylene dimerization upon activation with appropriate aluminum cocatalysts; the nickel complexes gave the activity up to 3.11 × 106 g mol−1(Ni) h−1 upon activation with diethylaluminum chloride (Et2AlCl), meanwhile the cobalt and iron complexes showed activities up to 1.51 × 106 g mol−1(Co) h−1 and 1.89 × 106 g mol−1(Fe) h−1, individually, upon activation with modified methylaluminoxane (MMAO).  相似文献   

5.
A series of nickel (II) complexes (L)NiCl2 (7-9) and (L)NiBr2 (10-12) were prepared by the reactions of the corresponding 2-carboxylate-6-iminopyridine ligands 1-6 with NiCl2 · 6H2O or (DME)NiBr2 (DME = 1,2-dimethoxyethane), respectively. All the complexes were characterized by IR spectroscopy and elemental analysis. Solid-state structures of 7, 8, 10, 11 and 12 were determined by X-ray diffraction. In the cases of 7, 8 and 10, the ligands chelate with the nickel centers in tridentate fashion in which the carbonyl oxygen atoms coordinate with the metal centers, while the carbonyl oxygen atoms are free from coordinating with the nickel centers in 11 and 12. Upon activation with methylaluminoxane (MAO), these complexes are active for ethylene oligomerization (up to 7.97 × 105 g mol−1 (Ni) h−1 for 11 with 2 equivalents of PPh3 as auxiliary ligand) and/or polymerization (1.37 × 104 g mol−1 (Ni) h−1 for 9). The ethylene oligomerization activities of 7-12 were significantly improved in the presence of PPh3 as auxiliary ligands. The effects of the coordination environment and reaction conditions on the ethylene catalytic behaviors have been discussed.  相似文献   

6.
Ligands (2-pyridyl-2-furylmethyl)imine, (L1), (2-pyridyl-2-thiophenemethyl)imine (L2), and (2-pyridyl-2-thiopheneethyl)imine (L3) were synthesized by condensation reactions and obtained in good yields. Reactions of L1-L3 with either [PdClMe(cod)] or [PdCl2(cod)] gave the corresponding monometallic palladium(II) complexes 1-5 in very good yields. Molecular structures of complexes 1, 4 and 5 indicated that the ligands are bidentate and coordinate to the palladium metal through the imine and pyridine nitrogen atoms. When complexes 3-5 were treated with NaBAr4, cationic species, 3a, 4a, and 5a were produced which catalyzed polymerization of ethylene though with very low activities. 1H NMR spectroscopy studies showed that these cationic species were very stable in solution. DFT calculations showed high ethylene coordination barriers to the cationic species 3a, 4a and 5a.  相似文献   

7.
The novel nickel (II) complexes (2a, 2b) bearing 1-pyridyl-(3-substituedimidazole-2-thione) ligands were synthesized by the reaction of the corresponding ligands with NiBr2(DME). 2a and 2b have been characterized by IR, NMR and elemental analysis. The nickel complexes show high catalytic activities for norbornene polymerization in the presence of MAO (methylaluminoxane), although low activities for ethylene polymerization.  相似文献   

8.
A series of Ni(II) complexes 4a-f ligated by the unsymmetrical phosphino-oxazolines (PHOX) were synthesized and characterized by elemental analysis and IR spectroscopy, and the structures of complexes 4c-4e were confirmed by the X-ray crystallographic analysis. All derivatives showed distorted tetrahedron geometry by the nickel center and coordinative atoms. Upon activation with methylaluminoxane (MAO) or Et2AlCl, these complexes exhibited considerable to high activity of ethylene oligomerization. The ligands environments and reaction conditions significantly affect their catalytic activities, while the highest oligomerization activity (up to 1.18 × 106 g · mol−1(Ni) · h−1) was observed for 4d at 20 atm of ethylene. Incorporation of 2-4 equivalents of PPh3 as auxiliary ligands in the 4a-f/MAO catalytic systems led to higher activity and longer catalytic lifetime.  相似文献   

9.
A series of 2,6-bis(imino)pyridyl iron(II) and cobalt(II) complexes [2,6-(ArNCMe)2C5H3N]MCl2 (Ar = 2,6-i-Pr2C6H3, M = Fe: 3a, M = Co: 4a; Ar = 2,4,6-i-Pr3C6H2, M = Fe: 3b, M = Co: 4b; Ar = 2,6-i-Pr2-4-BrC6H2, M = Fe: 3c, M = Co: 4c; Ar = 2,4-i-Pr2-6-BrC6H2, M = Fe: 3d, M = Co: 4d) has been synthesized, characterized, and investigated as precatalysts for the polymerization of ethylene in the presence of modified methylaluminoxane (MMAO). The substituents of pyridinebisimine ligands and their positions located significantly influence catalyst activity and polymer property. It is found that the catalytic activities of the iron complexes/MMAO systems are mainly dominated by electronical effect, while those of the cobalt complexes/MMAO systems are primarily controlled by hindering effect.  相似文献   

10.
Cr(III) complexes of tridendate imine and amine ligands with N, P, O, S donor atoms 1 and 2 have been prepared and tested as catalysts in the oligomerisation and polymerisation of ethylene giving excellent selectivity towards 1-hexene and polymerisation to polyethylene when activated with cocatalysts. X-ray structure analyses of the precatalysts 1a-c, 1i, and 2b are investigated. The metal-ligand binding in 1a and 1b is nearly the same, which leads to similar catalytic activities of these precatalysts.  相似文献   

11.
The NNN-tridentate metal complexes, LMCl2 (M = Fe or Co; L represents a ligand of 2-(benzimidazol-2-yl)-1,10-phenanthrolines), were synthesized and fully characterized with spectroscopic and elemental analysis. The single-crystal X-ray crystallographic analyses revealed complex 1a with a distorted octahedron geometry due to incorporating one methanol molecule, and complexes 5a and 9b with a distorted trigonal-bipyramidal geometry. Upon activation with modified methylaluminoxane (MMAO), these complexes showed good to high catalytic activities toward ethylene oligomerization. The detailed investigations were carried out to disclose the influences of various reaction conditions and nature of ligands on their performing activities of metal complexes.  相似文献   

12.
Reactions of [2-(3,5-dimethyl-pyrazol-1-yl)-ethanol] (L1) and [1-(2-chloro-ethyl)-3,5-dimethyl-1H-pyrazole] (L2) with Fe(II), Co(II), Ni(II), and Pd(II) salts gave the complexes [(L1)2FeCl2] (1), [(L1)2CoCl2] (2), [(L1)2NiBr2] (3), [(L1)2Pd(Me)Cl] (5), [(L2)2CoCl2] (6), and [(L2)2NiBr2] (7). Whereas L2 behaves as a monodentate ligand, L1 can behave as either a monodentate or bidentate ligand depending on the nature of the metal centre. For palladium, L1 is monodentate in the solid state structure of 5 but bidentate in the structure of 4, obtained during attempts to crystallize 3. While the activation of iron, cobalt and palladium complexes with EtAlCl2 did not produce active ethylene oligomerization catalysts, the nickel complexes 3 and 7 produced active ethylene oligomerization catalysts. Activities as high as 4329 kg/mol Ni h were obtained. Catalyst 3 produced mainly butenes (57%) and hexenes (43%); of which a combined 20% were converted to Friedel-Crafts alkylated-toluene. Catalyst 7, on other hand, produced mainly butenes (90%) and small amounts of hexenes (10%) which were then completely converted to the corresponding Friedel-Crafts alkylated-toluene products. This difference in product distribution in catalysis performed by complexes 3 and 7 is indicative of the role of the OH functionality in L1 on the EtAlCl2 co-catalysts.  相似文献   

13.
(Pyrazole)nickel dibromide complexes, (3,5-Me2pz)2NiBr2 (1), (3-Mepz)4NiBr2 (2), (pz)4NiBr2 (3) and (3,5-tBu2pz)2NiBr2 (4), were prepared by the reaction of the appropriate pyrazole with (DME)NiBr2. Solid-state structures of these complexes show a direct relation between the steric bulk of the pyrazole ligand and structure, with more bulky ligands forming four-coordinate complexes (1 and 4) whereas the less bulky ligands formed six-coordinate complexes (2 and 3). Activation of selected complexes (1 and 3) with methylaluminoxane (MAO) produced species that catalyzed the polymerization of ethylene to form high density polyethylene.  相似文献   

14.
Four (P,N)-ligands (1-4) with different steric and electronic properties were synthesized. They were used to prepare the monocationic palladium complexes [Pd(P,N)(CH3)(NCCH3)](PF6) (9-12). The structures of the newly prepared ligand 3 and the neutral palladium complex [Pd(P,N)(CH3)Cl] (10) were analysed by X-ray. The catalytic activity of the palladium complexes toward the copolymerization of styrene and ethylene with CO was low or non-existent. The nickel complexes [Ni(P,N)(1-naphthyl)Cl] (13-16), modified with the ligands 1-4, were prepared and their catalytic activity toward ethylene oligomerization was studied. They showed high activity at ambient temperature and low ethylene pressure (1-12 bar) in the presence of MAO.  相似文献   

15.
A series of pyrrolyl-imines HL1-6 was prepared by the condensation of pyrrole-2-carboxyaldehyde with different amines. The reaction of 2 equiv of pyrrolyl-imine with tetrabenzyl complexes of hafnium and zirconium M(CH2Ph)4 (M=Hf or Zr) gave dibenzyl complexes (L3-6)2M(CH2Ph)2, which were characterized by NMR spectroscopy and crystal structure analysis. NMR spectra of the complexes with secondary alkyl substituents at the imine nitrogen (isopropyl: 3a, 4-tert-butylcyclohexyl: 4a and 4b) suggest that rapid racemization between Δ and Λ configurations occurs in solution on the NMR time scale. The complexes with pyrrolide-imine ligands with a tertiary alkyl group such as tert-butyl (5a and 5b) or 1-adamantyl (6a and 6b) at the imine nitrogen possess cis-configured benzyl groups. Hafnium complexes 5a and 6a react with B(C6F5)3 in bromobenzene-d5 to give the corresponding cationic benzyl complexes, which exhibit high activity for ethylene polymerization (5a: 2242 kg-polymer/ mol-Hf h bar, 6a: 2096 kg-polymer/ mol-Hf h bar). Zirconium complexes 5b and 6b display a remarkably high ethylene polymerization activity when activated with methylaluminoxane (5b: 17,952 kg-polymer/mol-Zr h bar, 6b: 22,944 kg-polymer/mol-Zr h bar).  相似文献   

16.
The copper(II) complexes CuLCl2 (1) and CuLBr2 (2), with the chelating pyrazolylpyrimidine ligand 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2-methyl-6-phenylpyrimidine (L), have been synthesized. A single crystal X-ray diffraction study revealed that 1 and 2 have molecular mononuclear structures. The molecules of 1 and 2 form chains in the crystal structures of these compounds due to the formation of π-π-stacking interactions between the pyrimidine and the phenyl rings. The complexes, in combination with the co-catalyst methylaluminoxane (MAO), reveal catalytic activity in ethylene polymerization, while the free ligand L is inactive.  相似文献   

17.
A series of new titanium complexes bearing β-diiminato ligands [(Ph)NC(R1)CHC(R2)N(Ph)]2TiCl2 (4a: R1 = R2 = CH3; 4b: R1 = R2 = CF3; 4c: R1 = Ph, R2 = CH3; 4d: R1 = Ph, R2 = CF3) has been synthesized and characterized. X-ray crystal structures reveal that complexes 4a and 4c adopt distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4a-d are active catalysts for ethylene polymerization, and produce high molecular weight polyethylenes. Catalyst activities and the molecular weights of polymers are considerably influenced by the steric and electronic effects of substituents on the catalyst backbone under the same polymerization condition. With the strong electron-withdrawing groups (CF3) at R1 or/and R2 position, complexes 4b and 4d show higher activities than complexes 4a and 4c, respectively.  相似文献   

18.
A series of N-(2-pyridyl)benzamides (1)-(11) and their nickel complexes, [N-(2-pyridyl)benzamide]dinickel(II) di-μ-bromide dibromide (12)-(16) and (aryl)[N-(2-pyridyl)benzamido](triphenylphosphine)nickel(II) (17)-(24), were synthesized and characterized. The single-crystal X-ray analysis revealed that 12 and 14 are binuclear nickel complexes bridged by bromine atoms and each nickel atom adopts a distorted trigonal bipyramidal geometry. The key feature of the complexes 17, 19 and 23 is each has a six-membered nickel chelate ring including a deprotonated secondary nitrogen atom and an O-donor atom. The nickel complexes show moderate to high catalytic activity for ethylene oligomerization with methylaluminoxane (MAO) as cocatalyst. The activity of 12-16/MAO systems is up to 3.3 × 104 g mol−1 h−1 whereas for 17-24/MAO systems it is up to 4.94 × 105 g mol−1 atm−1 h−1. The influence of Al/Ni molar ratio, reaction temperature, reaction period and PPh3/Ni molar ratio on catalytic activity was investigated.  相似文献   

19.
The 2-imino-1,10-phenanthroline ligands, 1,10-C12H7N2-2-CRN(2,6-i-Pr2-4-R1-C6H2) [R = R1 = H (L1); R = H, R1 = Br (L2); R = H, R1 = CN (L3); R = H, R1 = i-Pr (L4); R = Me, R1 = H (L5); R = Me, R1 = i-Pr (L6)], have been prepared in high yield from the condensation reaction of 1,10-C12H7N2-2-CRO (R = H, Me) with one equivalent of the corresponding 4-substituted 2,6-diisopropylaniline. The molecular structures of L2, L5 and L6 reveal the imino nitrogen atoms to adopt a transoid configuration with respect to the phenanthrolinyl nitrogen atoms. Treatment of Lx with one equivalent of CoCl2 in n-BuOH at 90 °C gives the high spin complexes, (Lx)CoCl2 [Lx = L1 (1a), L2 (1b), L3 (1c), L4 (1d), L5 (1e), L6 (1f)], in which the metal centres exhibit distorted square pyramidal geometries. Activation of 1a-1f with excess methylaluminoxane (MAO) gives catalysts that are modestly active for the oligomerisation of ethylene affording mainly linear α-olefins along with some degree of internal olefins. While the donor capability of the 4-position of the N-aryl group does not appear to affect the activity of the catalyst, it does have an influence on the ratio of α-olefins to internal olefins. Single crystal X-ray diffraction studies have been performed on L2, L5, L6, 1a, 1c and 1f.  相似文献   

20.
Reactions of 2,6-bis(bromomethyl)pyridine with 3,5-dimethylpyrazole and 1H-indazole yield the terdentate ligands 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (5) and 2,6-bis(indazol-2-ylmethyl)pyridine (6). The molecular structure of the new compound 6 was determined by single-crystal X-ray diffraction. These ligands react with the CrCl3(THF)3 complex in THF to form neutral complexes of general formula [CrCl3{2,6-bis(azolylmethyl)pyridine-N,N,N}] (7, 8) which are isolated in high yields as stable green solids and characterized by means of elemental analysis, magnetic moments, IR, and mass spectroscopy. Theoretical calculations predict that the thermodynamically preferred structure of the complexes is the fac configuration. After reaction with methylaluminoxane (MAO) the chromium(III) complexes are active in the polymerization of ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号