首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The novel photo-living radical polymerization was determined using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) and bis(alkylphenyl)iodonium hexafluorophosphate (BAI) as the photo-acid generator. The polymerization of methyl methacrylate was performed using azobisisobutylonitrile as an initiator in the presence of MTEMPO and BAI at room temperature by irradiation with a high-pressure mercury lamp to produce poly(methyl methacrylate) with a comparatively narrow molecular weight distribution (M w/M n?=?1.3–1.7). The polymerization proceeded by a living mechanism based on the fact that the first-order time-conversion plots linearly increased. A linear increase in the plots of the molecular weight versus the conversion also supported the living nature of the polymerization. It was found that MTEMPO had an interaction with the propagation chain end to control the molecular weight, while BAI weakened the interaction of MTEMPO with the propagation chain end to reduce the molecular weight distribution and polymerization time.  相似文献   

2.
The novel photo-living radical polymerization of methyl methacrylate (MMA) was determined using 2,2’-azobis(4-methoxy-2,4-dimethylvaleronitrile) (AMDV) and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) in the presence of bis(alkylphenyl)iodonium hexafluorophosphate (BAI). The polymerization provided a comparatively narrow molecular weight distribution in the range of 1.4–1.7. The resulting PMMA contained no BAI fragments in its structure and had the 1-cyano-1,3-dimethyl-3-methoxybutyl radical and MTEMPO at the 1:1 molar ratio. The experimental molecular weight was in close agreement with the theoretical one when the initiator efficiency was taken into consideration. The plots of ln([MMA]0/[MMA]) vs. time and the molecular weight of PMMA vs. the conversion and vs. the reciprocal of the initial concentration of AMDV showed linear correlations, indicating that the polymerization proceeded in accordance with a living mechanism. It was found that the polymerization had a photo-switching ability, because the polymerization was interrupted by turning off the irradiation, and then restarted by the irradiation again.  相似文献   

3.
The photo-controlled/living radical polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA) was attained using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator and (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) (r-AMDV) as the initiator. The bulk polymerization of DMAEMA produced a polymer with a comparatively narrow molecular weight distribution below 1.6. The first-order time conversion plots showed a linear increase. The molecular weight of the resulting polymer also increased with an increase in the monomer conversion. The molecular weights of the resulting polymers were in good agreement with the theoretical molecular weights. A linear correlation was also obtained for the plots of the molecular weight vs. the reciprocal of the initial concentration of r-AMDV. The GPC analysis demonstrated the living nature of the polymerization based on the fact that the curves were shifted to the higher molecular weight side without deactivation as the conversion increased.  相似文献   

4.
The photo-living radical polymerization of methyl methacrylate (MMA) was performed at room temperature using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) (r-AMDV) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator, and (4-tert-butylphenyl)diphenylsulfonium triflate ( t BuS) as the photo-acid generator. The livingness of the polymerization was confirmed on the basis of linear increases in the ln([MMA]0/[MMA]t) vs. time and in the molecular weight vs. the conversion. The molecular weight distributions of the resulting polymers were around 1.45. The polymerization rate was dependent both on the t BuS/MTEMPO and MTEMPO/r-AMDV molar ratios. Furthermore, it was found that the polymerization had a photo-latency because the polymerization was retarded by the interruption of the irradiation; however, it was accelerated again by further irradiation without deactivation of the growing polymer chain ends.  相似文献   

5.
The photo-controlled/living radical polymerization of methyl methacrylate using a nitroxide mediator was established in an inert atmosphere. The bulk polymerization was performed at room temperature using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator and (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator in the presence of (4-tert-butylphenyl)diphenylsulfonium triflate as the accelerator by irradiation with a high-pressure mercury lamp. The photopolymerization in a N2 atmosphere produced a polymer with a comparatively narrow molecular weight distribution; however, the experimental molecular weight was slightly different from the theoretical molecular weight. The Ar atmospheric polymerization also provided a polymer with the molecular weight distribution similar to that of the polymer obtained by the N2 atmospheric polymerization. These inert atmospheric polymerizations more rapidly proceeded to produce polymers with narrower molecular weight distributions than the vacuum polymerization. The livingness of the Ar atmospheric polymerization was confirmed on the basis of the first-order time–conversion plots and conversion–molecular weight plots.  相似文献   

6.
The effects of the structure of initiators and photo-acid generators on the nitroxide-mediated photo-living radical polymerization of methyl methacrylate were explored. The bulk polymerization was performed at room temperature using nine different initiators in the presence of (4-tert-butylphenyl)diphenylsulfonium triflate as the photo-acid generator. 2,2′-Azobisisobutyronitrile, 2,2′-azobis(2,4-dimethylvaleronitrile), dimethyl 2,2′-azobis(2-methylpropionate), and 2,2′-azobis(N-butyl-2-methylpropionamide) produced the polymers with a molecular weight distribution (MWD) around 1.6, while the racemic- and meso-(2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) provided a 1.4 MWD. 2,2′-Azobis(2-methylbutyronitrile), 1,1′-azobis(cyclohexane-1-carbonitrile), and 1-(cyano-1-methylethoxy)-4-methoxy-2,2,6,6-tetramethylpiperidine produced a broad MWD over 4.0. The structure of the photo-acid generator also had an influence on the molecular weight control. The photo-acid generator of sulfonium salts supporting the alkyl, methoxy, phenoxy, methylthio, and tert-butoxycarbonylmethoxy groups, coupled with halogens with the exception of the iodide had no effect on the MWD. On the other hand, the salts containing the iodide, phenylthio, and naphthyl groups produced polymers with broad MWDs and with uncontrolled high molecular weights.  相似文献   

7.
The nitroxide-mediated photo dispersion polymerization of methyl methacrylate (MMA) was performed by irradiation at room temperature using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator, (4-tert-butylphenyl)-diphenylsulfonium triflate as the photo-acid generator, and polyvinylpyrrolidone (PVP) as the surfactant in a mixed solvent of methanol/water = 3/1 (v/v). The MTEMPO-mediated photo dispersion polymerization produced spherical particles of PMMA, while the uncontrolled photo dispersion polymerization without MTEMPO provided nonspherical particles. The size distribution of the spherical particles decreased as the PVP concentration increased. The spherical particles showed a comparatively narrow molecular weight distribution of ca. 1.6. The livingness of the polymerization was confirmed on the basis of the linear correlations of the first-order time–conversion plots and conversion–molecular weight plots. The simultaneous control of the size distribution and molecular weight was possible as long as the light penetrates into the particles.  相似文献   

8.
Polystyrenes containing fluorescence end-groups were prepared by nitroxide-mediated radical polymerization. Combined molar mass regulator contained besides alkoxyamine part the structure of fluorescence mark. Stable nitroxyl radical represented 2,2,6,6-tetramethylpiperidine-Noxyl and covalently bonded fluorescence mark was benzothioxanthene. A fluorescence method as well as UV absorption was employed for measuring the concentration of nitroxyl-terminated chains in polystyrene samples. Theoretical molar masses of polystyrenes were calculated from these concentrations on the assumption that all polystyrene chains are terminated by alkoxyamine dormant end-functionality bearing fluorescence probe. Comparisons of these data with the molar masses from GPC gave us the range of the marked active polymer chain ends. Fractions of active polymer chain ends depended on the conversion. With increased conversion the fraction of polystyrene chains terminated by alkoxyamine was decreased. From this follows that the “livingness” of polymerization process decreased with the increasing of conversion. It should result in higher extent of termination and subsequently in the increasing of polydispersity with increased conversion. Despite this the observed polydispersity was the same for all conversion and reached the value ca. 1.3. The changing viscosity is responsible for the constant polydispersity.  相似文献   

9.
An anionic polymerization of t-butyl methacrylate and a copolymerization with methyl methacrylate were initiated with an organolithium ligated with 10 equiv of LiCl. As a rule, the complexation of the active species by LiCl masked the effect that the polarity of the solvent might have on the molecular structure of the chains. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1774–1785, 2001  相似文献   

10.
11.
Poly(acrylamide) (PAM) with controlled molecular weight and tacticity was prepared by UV-irradiation-initiated controlled/living radical polymerization in the presence of dibenzyl trithiocarbonate (DBTTC) and Y(OTf)3. The rapid and facile photo-initiated controlled/living polymerization at ambient temperature led to controlled molecular weight and narrow polydispersity (Mw/Mn = 1.12-1.24) of PAM. The coordination of Y(OTf)3 with the last two amide groups in the growing chain radical effectively enhanced isotacticity of PAM. The isotactic sequence of dyads (m), triads (mm) and pentads (mmmm) in PAM were 70.32%, 50.95%, and 29.97%, respectively, which were determined by the resonance of methine (CH) groups in PAM under 13C NMR experiment. Factors affecting stereocontrol during the polymerization were studied, including the type of Lewis acids, concentration of Y(OTf)3, and monomer conversion. It is intriguing that the meso tacticity increased gradually with chain propagation and quite higher isotacticity (m = 93.01%, mm = 86.57%) was obtained in the later polymerization stage (conversion 65-85%).  相似文献   

12.
13.
14.
Nitroxides bearing an α‐hydrogen decompose upon heating in a bimolecular reaction. A new mechanism is proposed for the decomposition of t‐butylisopropylphenyl nitroxide (TIPNO) involving the formation of a head‐to‐tail dimer, single electron transfer to form an oxammonium salt, epimerization to the corresponding nitrone, and elimination to form a conjugated oxime. This mechanism may provide insights into designing new nitroxides for use in controlled polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 697–717, 2006  相似文献   

15.
The effect of fullerene (C60) on the radical polymerization of methyl methacrylate (MMA) in benzene was studied kinetically and by means of ESR, where dimethyl 2,2′-azobis(isobutyrate) (MAIB) was used as initiator. The polymerization rate (Rp) and the molecular weight of resulting poly(MMA) decreased with increasing C60 concentration ((0–2.11) × 10−4 mol/L). The molecular weight of polymer tended to increase with time at higher C60 concentrations. Rp at 50°C in the presence of C60 (7.0 × 10−5 mol/L) was expressed by Rp = k[MAIB]0.5[MMA]1.25. The overall activation energy of polymerization at 7.0 × 10−5 mol/L of C60 concentration was calculated to be 23.2 kcal/mol. Persistent fullerene radicals were observed by ESR in the polymerization system. The concentration of fullerene radicals was found to increase linearly with time and then be saturated. The rate of fullerene radical formation increased with MAIB concentration. Thermal polymerization of styrene (St) in the presence of resulting poly(MMA) seemed to yield a starlike copolymer carrying poly(MMA) and poly(St) arms. The results (r1 = 0.53, r2 = 0.56) of copolymerization of MMA and St with MAIB at 60°C in the presence of C60 (7.15 × 10−5 mol/L) were similar to those (r1 = 0.46, r2 = 0.52) in the absence of C60. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2905–2912, 1998  相似文献   

16.
17.
The photo-induced micellization was attained for a poly(4-pyridinemethoxymethylstyrene)-block-polystyrene diblock copolymer using diphenyliodonium hexafluorophosphate, a photo-acid generator. Dynamic light scattering demonstrated that the copolymers with a 27.2-nm hydrodynamic diameter self-assembled into micelles with a 68.9-nm diameter by irradiation of a 1,4-dioxane solution of the copolymer using a high-pressure mercury lamp. The micellization was completed within 5 h based on the variation in the scattering intensity and the hydrodynamic diameter of the copolymer. It was found that the copolymer formed monodispersed spherical micelles because G1(τ), the normalized time correlation function of the scattered field, showed a linear decay. Furthermore, the proton nuclear magnetic resonance analysis confirmed that the micelles had cores formed by the poly(4-pyridinemethoxymethylstyrene) blocks. It was suggested that the micellization occurred by electron transfer from the pyridine to the photo-acid generator in their excited states.  相似文献   

18.
Multiwalled carbon nanotubes (MWCNT) were grafted with polystyrene by in situ nitroxide mediated radical polymerization in the presence of TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl) functionalized MWCNT, which was synthesized by the reaction between 4-hydroxyl-TEMPO (HO-TEMPO) and carbonyl chloride groups on the MWCNT. Although the controllability of the polymerization was not high, highly soluble grafted MWCNTs were indeed obtained, indicating that the graft polymerization was efficient. The resulting polystyrene grafted MWCNTs were easily defunctionalized at room temperature using 3-chloroperoxybenzioc acid. TEM, SEM, and TGA were employed to determine the structure, morphology, and the grafting quantities of the resulting products.  相似文献   

19.
Tandem atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMRP) were used to synthesize a polystyrene‐co‐poly(acrylic acid) (poly(St‐co‐AA)) network, in which the two components were interconnected by covalent bond. First, a specific cross‐linker, 1,4‐bis(1′‐(4″‐acryloyloxy‐2″,2″,6″,6″‐tetramethylpiperidinyloxy)ethyl)benzene (di‐AET), a bifunctional alkoxyamine possessing two acrylate groups, was copolymerized with tert‐butyl acrylate through ATRP to prepare a precursor gel. The gel was then used to initiate the NMRP of styrene to prepare poly(St‐co‐(t‐BA)) conetwork, in which the cross‐linkages are composed of polystyrene segments. Finally, the poly(St‐co‐(t‐BA)) conetwork was hydrolyzed to produce amphiphilic poly(St‐co‐AA) conetwork. The resulting gels show swelling ability in both organic solvent and water, which is characteristic of amphiphilic conetworks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4141–4149, 2010  相似文献   

20.
The specifics of the radical polymerization of styrene and methyl methacrylate in the presence of ruthenium closo- and exo-nido-carborane complexes with phosphine and diphosphine ligands were investigated. It was shown that, depending on a coinitiator, the polymerization proceeds through the atom transfer radical mechanism or the reverse atom transfer radical mechanism to high conversions without gelation to yield macromolecules with a low polydispersity. The influence of the ligand environment, the oxidation state of ruthenium atoms in the carborane complexes, and the temperature conditions on the specific features of the polymer synthesis was established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号