首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this short review we summarize our work on new cyclopentadienyl-free rare earth metal catalysts for the diastereoselective and enantioselective hydroamination of aminoalkenes. Non-metallocene rare earth metal catalysts based on diamidoamine, biphenolate and binaphtholate ligands are readily available through alkane and amine elimination procedures. Diamidoamine yttrium complexes are efficient catalysts for the highly diastereoselective cyclization of 1-methyl-pent-4-enylamine to yield trans-2,5-dimethyl-pyrroldine with trans to cis ratios of up to 23:1. The X-ray crystal structural analysis of [((2,6-Et2C6H3NCH2CH2)2NMe)Y{N(SiMe3)2}] is reported in which yttrium is coordinated in a highly distorted tetrahedral fashion. 3,3′-Di-tert-butyl substituted biphenolate complexes tend to form phenolate-bridged hetero- and homochiral dimers. The low steric demand of the tert-butyl substituents resulted also in low enantioselectivities in hydroamination/cyclization reactions. Binaphtholate complexes with sterically more demanding tris(aryl)silyl substituents were more efficient catalysts; giving enantioselectivities of up to 83% ee. These catalysts could also be applied in kinetic resolution of chiral aminoalkenes giving krel values as high as 16. Catalyst activities strongly depend on the reactivity of the leaving group which is protolytically exchanged for the substrate during the initiation step. Complexes with bis(dimethylsilyl)amido ligand initiate rather sluggishly because of the low basicity of this amido ligand and appreciable catalytic activity is only observed at elevated temperatures. Aryl and Alkyl complexes showed significant better rates comparable in magnitude to lanthanocene catalysts.  相似文献   

2.
The synthesis of the new chiral, pseudo C3-symmetric, monoanionic ligand tris(4S-tert-butyl-2-oxazolinyl)phenylborate [ToT] is reported. The steric bulk, tridentate coordination, and anionic charge of [ToT] are suitable for formation of complexes of the type ToTMX, where one valence is available for reactivity. With this point in mind, we prepared magnesium and calcium ToT complexes that resist redistribution to (ToT)2M compounds. Both ToTMgMe and ToTCaC(SiHMe2)3 contain tridentate ToT-coordination to the metal center, as shown by NMR spectroscopy, infrared spectroscopy, and X-ray crystallography. These compounds are active catalysts for the cyclization of three aminoalkenes to pyrrolidines, and provide non-racemic mixtures of pyrrolidines in enantiomeric excesses up to 36%.  相似文献   

3.
4.
5.
A biphasic catalytic system with water-soluble rhodium complexes of sulfonated (R)-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (labeled as (R)-BINAPS) in ionic liquid BMI·BF4 has been developed for the asymmetric hydroformylation of vinyl acetate under mild conditions. The corresponding ruthenium complexes have been investigated for the biphasic asymmetric hydrogenation of dimethyl itaconate. The biphasic asymmetric hydroformylation of vinyl acetate provided 28.2% conversion and 55.2% enantiomeric excess when BMI·BF4–toluene was used as the reaction medium at 333 K and 1.0 MPa for 24 h. The biphasic asymmetric hydrogenation of dimethyl itaconate in BMI·BF4iPrOH at 333 K and 2.0 MPa afforded 65% enantiomeric excess with an activity similar to the homogenous analogs. Both biphasic catalytic systems with (R)-BINAPS ligand could be reused several times without significantly decrease in the activity, enantio- and regio-selectivities. The effects of properties of ionic liquid, molar ratio of ligand to rhodium, temperature, pressure and reaction time have been discussed.  相似文献   

6.
Monomeric diolate amido yttrium complexes [Y[diolate][N(SiHMe(2))(2)](thf)(2)] can be prepared in good yield by treating [Y[N(SiHMe(2))(2)](3)(thf)(2)] with either 3,3'-di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diol (H(2)(Biphen)), 3,3'-bis(2,4,6-triisopropylphenyl)-2,2'-dihydroxy-1,1'-dinaphthyl (H(2)(Trip(2)BINO)) or 3,3'-bis(2,6-diisopropylphenyl)-2,2'-dihydroxy-1,1'-dinaphthyl (H(2)(Dip(2)BINO)) in racemic and enantiopure form. The racemic complex [Y(biphen)[N(SiHMe(2))(2)](thf)(2)] dimerizes upon heating to give the heterochiral complex (R,S)-[Y(biphen)[N(SiHMe(2))(2)](thf)](2). The corresponding dimeric heterochiral lanthanum complex was the sole product in the reaction of H(2)(Biphen) with [La[N(SiHMe(2))(2)](3)(thf)(2)]. Single-crystal X-ray diffraction of both dimeric complexes revealed that the two Ln(biphen)[N(SiHMe(2))(2)](thf) fragments are connected through bridging phenolate groups of the biphenolate ligands. The two different phenolate groups undergo an intramolecular exchange process in solution leading to their equivalence on the NMR timescale. All complexes were active catalysts for the hydroamination/cyclization of aminoalkynes and aminoalkenes at elevated temperature, with [Y((R)-dip(2)bino)[N(SiHMe(2))(2)](thf)(2)] being the most active one giving enantioselectivities of up to 57 % ee. Kinetic resolution of 2-aminohex-5-ene proceeded with this catalyst with 6.4:1 trans selectivity to give 2,5-dimethylpyrrolidine with a k(rel) of 2.6.  相似文献   

7.
An Ir-catalyzed asymmetric allylic alkylation using chiral diaminophosphine oxide is described. Asymmetric allylic alkylation of terminal allylic carbonates proceeded using 5 mol % of Ir catalyst, 5 mol % of DIAPHOX 1i, 10 mol % of NaPF6, 10 mol % of LiOAc, and N,O-bis(trimethylsilyl)acetamide (BSA), affording the corresponding branched products in excellent yield and in up to 95% ee. The developed catalytic asymmetric reaction was successfully applied to a formal enantioselective synthesis of (−)-paroxetine.  相似文献   

8.
Optically pure (−)-cytoxazone was synthesized, starting from methyl p-methoxycinnamate, in six steps and in 31% overall yield. The required anti-aminoalcohol configuration was established by combining Sharpless asymmetric aminohydroxylation with the configurational inversion of the intermediate amidoalcohol via an oxazoline. The synthesis of (+)-epi-cytoxazone is also described.  相似文献   

9.
Enantioselective divergent approaches to (−)-platencin and (−)-platensimycin have been developed. A rationally designed chiral synthetic intermediate, possessing a useful α,β-unsaturated sulfone functionality, which served as a masked ketone as well as a good Michael acceptor, was successfully prepared via the highly enantioselective catalytic asymmetric intramolecular cyclopropanation (CAIMCP) developed in our laboratory.  相似文献   

10.
Chiral 2-pyridylsulfinamides were shown to be effective catalysts in the alkylation of aryl and alkyl aldehydes with diethylzinc providing the corresponding alcohols in excellent enantioselectivity. Sulfinamide catalysts possessing solitary chirality at the sulfur center produced the product phenethyl alcohol in good enantioselectivity. Diastereomeric sulfinamides possessing chirality at the carbon-bearing nitrogen and at the sulfur of the sulfinamide increased the enantioselectivity of the product alcohols up to >99%. However, there is no effect of the match-mismatch pair of sulfinamide diastereomers on the outcome of the chiral induction of the product phenethyl alcohols. It was conclusively proved that chirality at the sulfur center is mandatory for obtaining good enantioselectivity in the reaction.  相似文献   

11.
Stereoselective synthesis of two distinctive pyranone skeletons diospongin A and cryptofolione has been described based on an asymmetric aldol reaction starting from Chan’s diene. The synthetic strategy involves the enantioselective Mukaiyama aldol, diastereoselective reduction of δ-hydroxy-β-keto ester, a tandem sequence of deprotection, and intramolecular oxa-Michael reaction to obtain diospongin A and an asymmetric allylation and lactone formation using ring-closing metathesis reaction to obtain cryptofolione.  相似文献   

12.
If Grignard had only known! A chiral magnesium complex catalyzes the intramolecular hydroamination/cyclization of aminoalkenes with high efficiency at temperatures as low as ?20?°C and enantioselectivities as high as 93?%?ee. The high activity of this system also allows the catalytic intermolecular anti-Markovnikov addition of pyrrolidine and benzylamine to vinyl arenes.  相似文献   

13.
Cleavage of the [Ir(η4-COD)Cl]2 dimer in the presence of the corresponding imidazolium salts and the strong base tBuO leads to the formation of Ir(I) derivatives of N-heterocyclic carbenes. When halide is replaced by NaCp, a mixture of [Ir(η4-COD)(NHCR)(η1-Cp)] and [Ir(η2-COD)(NHCR)(η5-Cp)] is obtained. The latter is favored for R = Cy, while the former predominates for R = Me. Conversely, [Ir(η4-COD)(NHCR)(η1-Ind)] is the only product of the reaction with NaInd, despite the R substituent. DFT/B3LYP calculations confirmed that the η1 coordination mode of the ring gives rise to the most stable structures, namely square planar complexes of 5d8 Ir(I). The energy of the 18 electron species containing η2-COD and η5-Ind or Cp is higher by 13 and 5 kcal mol−1, respectively. The fluxional behaviour of indenyl, detected by NMR in the solutions of [Ir(η4-COD)(NHCR)(η1-Ind)], is associated to the low energy of the η3-Ind species required in the conversion process, and is not easily observed in the cyclopentadienyl derivatives, where a similar intermediate is disfavored.  相似文献   

14.
Four new copper(II)/diamine complexes comprising some (+)-sparteine surrogates and a cyclohexane-derived diamine were prepared and evaluated as chiral catalysts in desymmetrisation of meso-diols and asymmetric Henry reactions. Mono-benzoylation reactions generated two products with high enantioselectivity (90:10 to 97:3 er). Asymmetric Henry reactions gave nitro alcohols in 90:10 to 98:2 er. Notably, the sense of induction with the (+)-sparteine surrogates was opposite to that obtained using the copper(II)/(−)-sparteine complex. One of the nitro alcohol products was utilised in a concise synthesis of a chiral morpholine.  相似文献   

15.
The binuclear chiral (salen) Co complexes bearing Lewis acids of Al and Ga catalyze regio- and enantioselective ring opening of terminal epoxides with carboxylic acids. The ring opened product of epichlorohydrin with carboxylic acids followed by cyclization step in the presence of catalyst and base represent straightforward, efficient methods for the synthesis of enatiomerically enriched (>99% ee) valuable terminal epoxides. Strong synergistic effects of different Lewis acid of Co-Al and Co-Ga were exhibited in the catalytic process.  相似文献   

16.
Shyla George 《Tetrahedron》2006,62(43):10202-10207
An efficient enantioselective synthesis of (−)-chloramphenicol (1) and (+)-thiamphenicol (2) is described. These antibiotics have been synthesized from commercially available 4-nitrobenzaldehyde and 4-(methylthio)benzaldehyde, respectively, using tethered aminohydroxylation and Sharpless asymmetric epoxidation as the chirality inducing steps.  相似文献   

17.
Jan Knöll 《Tetrahedron letters》2006,47(34):6079-6082
Epoxidation of the trisilyl-protected carbazomadurins A and B with dimethyldioxirane followed by desilylation provides a simple route to racemic epocarbazolin A and a non-diastereoselective access to epocarbazolin B. The Shi epoxidation has been applied to an asymmetric synthesis of the non-natural (−)-epocarbazolin A.  相似文献   

18.
Chloramphenicol and thiamphenicol have been enantioselectively synthesized using an asymmetric halohydrin reaction as a key step. In particular, halomethoxylation reaction was used, where O-methyl functions as a hydroxyl protecting group and eliminates an additional protection step.  相似文献   

19.
Compound trans-PtBr2(C2H4)(NHEt2) (1) has been synthesized by Et2NH addition to K[PtBr3(C2H4)] and structurally characterized. Its isomer cis-PtBr2(C2H4)(NHEt2) (3) has been obtained from 1 by photolytic dissociation of ethylene, generating the dinuclear trans-[PtBr2(NHEt2)]2 intermediate (2), followed by thermal re-addition of C2H4, but only in low yields. The addition of further Et2NH to 1 in either dichloromethane or acetone yields the zwitterionic complex trans-Pt(−)Br2(NHEt2)(CH2CH2N(+)HEt2) (4) within the time of mixing in an equilibrated process, which shifts toward the product at lower temperatures (ΔH° = −6.8 ± 0.5 kcal/mol, ΔS° = 14.0 ± 2.0 e.u., from a variable temperature IR study). 1H NMR shows that free Et2NH exchanges rapidly with H-bonded amine in a 4·NHEt2 adduct, slowly with the coordinated Et2NH in 1, and not at all (on the NMR time scale) with Pt-NHEt2 or -CH2CH2N(+)HEt2 in 4. No evidence was obtained for deprotonation of 4 to yield an aminoethyl derivative trans-[PtBr2(NHEt2)(CH2CH2NEt2)] (5), except as an intermediate in the averaging of the diasteretopic methylene protons of the CH2CH2N(+)HEt2 ligand of 4 in the higher polarity acetone solvent. Computational work by DFT attributes this phenomenon to more facile ion pair dissociation of 5·Et2NH2+, obtained from 4·Et2NH, facilitating inversion at the N atom. Complex 4 is the sole observable product initially but slow decomposition occurs in both solvents, though in different ways, without observable generation of NEt3. Addition of TfOH to equilibrated solutions of 4, 1 and excess Et2NH leads to partial protonolysis to yield NEt3 but also regenerates 1 through a shift of the equilibrium via protonation of free Et2NH. The DFT calculations reveal also a more favourable coordination (stronger Pt-N bond) of Et2NH relative to PhNH2 to the PtII center, but the barriers of the nucleophilic additions of Et2NH to the C2H4 ligand in 1 and of PhNH2 to trans-PtBr2(C2H4)(PhNH2) (1a) are predicted to be essentially identical for the two systems.  相似文献   

20.
[(R)-1,1′bi-2,2′-Naphthoxy]LnI(THF)2 (Ln: Yb, Sm, La) 5 have been prepared by reaction of the bispotassium salt of (R)-binaphthol with lanthanide triiodides, and characterized. They are active catalysts for Diels–Alder reactions although with low asymmetric inductions. The lanthanum iodo bisbinaphthoxide gives a slightly higher enantiomeric excess than the two other complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号