首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The chemical composition and morphology of Syngonanthus nitens (Capim Dourado) fibers were investigated. An unusual low lignin content and high holocellulose content have been observed. High aspect ratio cellulose whiskers were prepared from these lignocellulosic fibers by an acid hydrolysis treatment. The average diameter and length were 4.5 nm and 300 nm, respectively, giving rise to an aspect ratio around 67. Natural Rubber nanocomposite films reinforced with cellulose whiskers extracted from capim dourado were prepared by film casting. The mechanical properties of the ensuing nanocomposite films were investigated in both the linear and the non-linear range using dynamical mechanical analysis and tensile tests, respectively. The reinforcing effect observed above the glass transition temperature of the matrix was higher than the one observed for other polysaccharide nanocrystals and cellulose whiskers extracted from other sources.  相似文献   

2.
Cellulose fibers were isolated from a kenaf bast fiber using a electron beam irradiation (EBI) treatment. The methods of isolation were based on a hot water treatment after EBI and two-step bleaching processes. FT-IR spectroscopy demonstrated that the content of lignin and hemicellulose in the bleached cellulose fibers treated with various EBI doses decreased with increasing doses of EBI. Specifically, the lignin in the bleached cellulose fibers treated at 300 kGy, was almost completely removed. Moreover, XRD analyses showed that the bleached cellulose fibers treated at 300 kGy presented the highest crystallinity of all the samples treated with EBI. Finally, the morphology of the bleached fiber was characterized by SEM imagery, and the studies showed that the separated degree of bleached cellulose fibers treated with various EBI doses increased with an increase of EBI dose, and the bleached cellulose fibers obtained by EBI treatment at 300 kGy was separated more uniformly than the bleached cellulose fiber obtained by alkali cooking with non-irradiated kenaf fiber.  相似文献   

3.
Biocomposite materials based on Alfa cellulose fibers (esparto grass plant) as reinforcing element and starch‐based biopolymer matrix were prepared and characterized in terms of mechanical performance, thermal properties, and water absorbance behavior. The fibers and the matrix were first mixed in the melted state under mechanical shearing using a plastograph and the obtained composites were molded by injection process. The tensile mechanical analysis showed a linear increase of the composite flexural and tensile modulus upon increasing the fiber content, together with a sharp decrease of the elongation at break. The fibers′ incorporation into the biopolymer matrix brings about an enhancement in the mechanical strength and the impact strength of the composite. Dynamic mechanical thermal analysis (DMTA) investigation showed two relaxations occurring at about ?30 and 35°C. The addition of Alfa fibers enhanced the storage modulus E′ before and after Tα, which is consistent with the reinforcing effect of Alfa cellulose fibers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is an initial study of the implementation of two new enzymes, an endoglucanase and a concoction of hemicellulases and pectinases to obtain cellulosic nanoparticles. In this study, curauá and sugarcane bagasse were dewaxed and bleached prior to enzymatic action for 72 h at 50 °C, and then followed by sonication. The concentration between these two enzymes was varied, and for the concentrations and time of enzymatic treatment used, subsequent sonication was necessary for cellulose nanoparticle release. It was easier to extract cellulose nanofibers from sugarcane bagasse which resulted in nanoparticles without damage of cellulose chains. On the other hand, curauá fibers needed a higher concentration of enzymes and the nanofibers obtained displayed a decrease of crystallinity suggesting that the cellulose structure was compromized. For both fibers, cellulose nanocrystals (single crystals) and larger diameter nanofibers were attained after the sonication.  相似文献   

5.
Nanofibrillated cellulose (NFC) is a type of nanomaterial based on renewable resources and produced by mechanical disintegration without chemicals. NFC is a potential reinforcing material with a high surface area and high aspect ratio, both of which increase reinforcement on the nanoscale. The raw materials used were unbleached and bleached bamboo organosolv pulp. Organosolv pulping is a cleaner process than other industrial methods (i.e. Kraft process), as it uses organic solvents during cooking and provides easy solvent recovery at the end of the process. The NFC was produced by treating unbleached and bleached bamboo organosolv pulps for 5, 10, 15 and 20 nanofibrillation cycles using the grinding method. Chemical, physical and mechanical tests were performed to determine the optimal condition for nanofibrillation. The delamination of the S2 layer of the fibers during nanofibrillation contributed to the partial removal of amorphous components (mainly lignin), which have low polarity and improved the adhesion of the fibers, particularly the unbleached cellulose. The transverse modulus of elasticity of the unbleached NFC was highest after 10 nanofibrillation cycles. Further treatment cycles decreased the modulus due to the mechanical degradation of the fibers. The unbleached NFC produced by 10 cycles have a greater transverse modulus of elasticity, the crystallite size showed increase with the nanofibrillation, and after 5 nanofibrillation cycles, no differences are observed in the morphology of the fibers.  相似文献   

6.
Lysozyme was attached through an amide linkage between some of the protein’s aspartate and glutamate residues to amino-glycine-cellulose, which was prepared by esterification of glycine to preparations of cotton nanocrystals. The nanocrystalline preparations were produced through acid hydrolysis and mechanical breakage of the cotton fibers from a scoured and bleached cotton fabric and a scoured and bleached, mercerized fabric, which was shown to produce cellulose I (NCI) and cellulose II (NCII) crystals respectively. A carbodiimide-activation coupling reaction was used to create the lysozyme-amino-glycine-cellulose conjugates using both NCI and NCII in a polar solvent and gave yields of covalently linked lysozyme at 604 mg/gram of cotton nanocrystal. The incorporation of lysozyme conjugated to the NCI and NCII preparations gave very high activity (1,500 U/mg cotton) when assessed using a fluorescence tag assay to measure antimicrobial activity against Micrococcus lysodeikticus. Scanning electron micrographs demonstrated an aggregation of nanoparticles corresponding to lysozyme bound on the surface of larger cotton nanocrystalline sheets. The approach of producing high enzyme activity on cotton nanocrystals is discussed in the context of selectively presenting robust hydrolase activity on nanocrystalline surfaces.  相似文献   

7.
The influence of fine-disperse iron oxide particles on the structure of alumina fibers prepared via the template synthesis has been studied. The template (fibers of bleached cotton cellulose) has been impregnated with mixed aqueous dispersions of aluminum and iron(III) hydroxides prepared via the sol–gel route. Thermal treatment of the precursor has afforded alumina ceramic fibers with average diameter of 3–10 µm containing uniformly distributed iron(III) oxide nanoparticles at the surface. Increase of the iron(III) oxide nanoparticles concentration has deteriorated the texture properties of the product.  相似文献   

8.
The reaction between bleached banana pulp and pure maleic anhydride (MA) was investigated. The reaction was conducted in a reactor in the presence of xylene used as a solvent and sodium hypophosphite as catalyst. The appearance of infrared absorption bands at 1891 and 1708 cm?1 indicated that MA chemically reacted by esterification with bleached banana pulp. However, evidence of an esterification reaction was obtained between cellulose and MA. The production of fast‐responding bulk hydrogel with a high swelling ratio was also investigated. This hydrogel was synthesized first by the formation of maleated acrylamide particles and then by the graft copolymerization of the particles with cellulose. The maleated acrylamide particles were characterized with mass spectroscopy, and the formed hydrogl was characterized by FT‐IR. The esterification reaction between bleached banana pulp and maleated acrylamide was also studied. Steam absorption for bulk hydrogel, maleated acrylamide‐treated bleached banana pulp, MA‐treated cellulose and bleached banana pulp is higher than the steam absorption for untreated cellulose and bleached banana pulp. Compared with treated bleached banana pulp and cellulose, the hydrogel had very high swelling ratios and much faster swelling rates attributed to the collaboration of the ionized particles and bulk hydrogel. The number of ionic maleated acrylamide groups in the hydrogel affected the swelling behavior. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
The goal of this work was to prepare cellulosic nanoparticles using different processing routes, viz. a combination of mechanical shearing, acid and enzymatic hydrolysis. It was shown that the enzymatic hydrolysis pretreatment of bleached sisal pulp helps the preparation of well individualized rod-like nanocrystals. The morphology of cellulose fibers and nanoparticles was determined by scanning and transmission electron microscopies, respectively. The main outcome of this study indicated the usefulness of the enzymatic treatment for cellulose nanocrystals production. The enzymatic treatment allowed production of a broad range of cellulosic nanoparticles. This investigation proved that the distinction between MFC and whiskers to describe such cellulose nanoparticles is not sufficient. Indeed, it appears essential to indicate the pretreatment performed.  相似文献   

10.
Summary: Cellulose nanocrystals (CNC) were extracted from Kraft pulp of Eucalyptus urograndis. The CNC were isolated by acid hydrolysis with H2SO4 64% (w/w) solution, for 20 minutes at 45 °C. The morphology and crystallinity of the CNC were investigated by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. The AFM image supports the evidence for the development of crystals of cellulose in nanometric scale. These nanoparticles were used as reinforcement material in carboxymethyl cellulose (CMC) matrix. Nanocomposites films were prepared by casting. The nanocomposites were characterized by thermal (TGA) and mechanical (DMA) analyses. A large reinforcing effect of the filler was observed. The tensile strength of nanocomposites was significantly improved by 107%, the elongation at break decreased by 48% and the thermal resistance increased slightly. The improvements in thermo-mechanical properties suggest a close association between filler and matrix.  相似文献   

11.
Highly concentrated solutions of cellulose and solutions of cellulose blends with synthetic polymers are prepared via the solid-phase dissolution of cellulose in N-methylmorpholine-N-oxide. The phase state and morphological features of these solutions are studied via DSC and polarization microscopy, and their rheological behavior is considered. Evolution in the structure of cellulose in these systems is investigated at all stages during spinning of oriented fibers from solutions. It is first shown that the addition of synthetic polymers to cellulose makes it possible to control processes of cellulose structuring; to stop them at the stage of mesophase formation; and, thus, to avoid further perfection of the structure and formation of the crystalline phase of cellulose.  相似文献   

12.
The aim of this study was to find newly structured biopolymer blends bearing those adjustable features able to produce innovative materials. Apart from cellulose derivatives (cellulose carbamate and carboxymethyl cellulose), mannans (guar gum, locust bean gum, and tragacanth gum), xylan, starch (cationized), ι-carrageenan, and xanthan were chosen as blend polysaccharides for cellulose as matrix. In order to study their integration into the cellulose skeleton, fibers were shaped from three different solvents: NaOH by a special wet-spinning process, as well as N-methylmorpholine-N-oxide (NMMO) and 1-ethyl-3-methylimidazolium acetate (EMIMac) via Lyocell technology. The structure and morphologies of the fibers were analyzed by X-ray wide-angle scattering and atomic force microscopy. Hydrophilic/hydrophobic properties were determined by means of a contact angle, as well as moisture content and water retention values, while the surface properties throughout zeta-potential measurements. Being very different processes, the wet spinning in NaOH solution and the dry–wet spinning are deeply impacted by the types of solvent and polysaccharide. The X-ray results for NMMO fibers revealed the highest orientation compared with EMIMac having the lowest orientation of NaOH fibrous types. AFM images also show the lowest surface roughnesses for NMMO and EMIMac fibers. The moisture content and water retention values support these trends, while the water contact angle results show insignificant differences between the samples from EMIMac and NaOH, even though the values calculated for NMMO fibers were the lowest.  相似文献   

13.
Nanocomposite cellulose films with obvious magnetic anisotropy have been prepared by in situ synthesis of plate-like Fe2O3 nanoparticles in the cellulose matrix. The influence of the concentrations of FeCl2 and FeCl3 solutions on the morphology and particle size of the synthesized Fe2O3 nanoparticles as well as on the properties of the composite films has been investigated. The Fe2O3 nanoparticles synthesized in the cellulose matrix was γ-Fe2O3, and its morphology was plate-like with size about 48 nm and thickness about 9 nm, which was totally different from those reported works. The concentration of FeCl2 and FeCl3 solution has little influence on the particle size and morphology of the Fe2O3 nanoparticles, while the content of Fe2O3 nanoparticles increased with the increase of the concentration of the precursor solution, indicating that porous structured cellulose matrix could modulate the growth of inorganic nanoparticles. The unique morphology of the Fe2O3 nanoparticles endowed the composite films with obvious magnetic anisotropy, which would expand the applications of the cellulose based nanomaterials.  相似文献   

14.
Water responsive SiO2/cellulose nanocomposite hydrogels and films were constructed, for the first time, by dispersing SiO2 nanoparticles into cellulose solution in LiOH/urea solvent, and then by crosslinking with epichlorohydrin or regeneration in coagulation bath, respectively. The cellulose nanocomposite materials were characterized by Field emission scanning electron microscopy, FTIR, dynamic rheology, wide angle X-ray diffraction and mechanical test. The SiO2/cellulose nanocomposites at wet state or in water displayed unique behaviors, showing higher light transmittance than those before contacting with water. The results revealed that strong hydrogen-bonding interaction among water, cellulose and SiO2 led the good dispersion of SiO2 nanoparticles in the cellulose matrix. The incorporation of SiO2 nanoparticles improved the transmittance and mechanical strength of the cellulose hydrogels, and also enhanced the mechanical strength of the films. Especially, the cellulose/SiO2 nanocomposite films were milky at dry state, and changed to transparent after being soaked in water, different from the cellulose film without the SiO2 nanoparticles. In our findings, SiO2 and cellulose with water could form strong hydrogen bonding to create a homogenous network structure. The cellulose/SiO2 composite as a smart material exhibited moisture and solvent responsiveness, showing potential applications in moisture detection.  相似文献   

15.
Hollow structures show both light scattering and light trapping, which makes them promising for dye‐sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO2 fibers are prepared by layer‐by‐layer (LbL) self‐assembly deposition of TiO2 nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO2 dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO2 nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25–fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50 % in conversion efficiency. By employing the intensity‐modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light‐harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs.  相似文献   

16.
Summary New regenerated cellulose fibers were developed during the last decades as environmentally friendly systems. In this work, three fibers: lyocell, modal and viscose were subjected to an enzymatic treatment. Likewise, different lyocell fibers were washed in a Na2CO3 solution under severe conditions. Analysis was performed by means of differential scanning calorimetry, thermogravimetry and scanning electron microscopy. In all samples, at low temperature, water desorption was detected. Furthermore, thermal analysis shows wide exothermic processes that began between 250 and 300°C corresponding to the main thermal degradation and it is associated to a depolymerization and decomposition of the regenerated cellulose. It is accompanied with mass more than 60% mass loss. Kinetic analysis was performed and activation energy values 152-202 kJ mol-1 of the main degradation process are in agreement with literature values of cellulose samples.  相似文献   

17.
Gold nanoparticles exhibit unique optical, thermal, chemical and physical properties. The microorganisms have high potential for production of nanoparticles with wide applications. Application of fungi to produce nanoparticles is potentially exciting because of their ability to secrete large amounts of enzymes. In this study, we investigated biosynthesis of gold nanoparticles by the fungus Epicoccum nigrum isolated from Andalian gold mine in north-west of Iran. The gold nanoparticles were produced intra and extracellular by reaction of an aqueous solution of chloroauric acid with the biomass of fungus E. nigrum. The produced gold nanoparticles were in the size range of 5–50 nm in spherical and rod shapes. This is the first report on the biosynthesis of gold nanoparticles by the fungus E. nigrum.  相似文献   

18.
The FIRST (Feedstock Impregnation and Rapid Steam Treatment) approach was used in this study to isolate extractives, hemicellulose, lignin, fibers, and cellulosic fines of softwood. With hydrolysis and fermentation of the hemicellulose and cellulosic fines fractions, this approach produces four co-products: extractives, cellulose, lignin, and ethanol. The first unit operation uses aqueous/alcohol to remove and recover the extractive rich fraction. The second unit operation uses steam treatment to destructure the matrix and solubilize a large fraction of the hemicelluloses. The third unit operation uses alkaline delignification to dissolve a lignin fraction. The fourth unit operation uses the refining process to separate fibers from cellulosic fines. The fibers are bleached. The yields of lignin and bleached cellulose were about 20.0 kg and 38.3 kg out of 100 kg initial dry pine, respectively. The recovered hemicelluloses were 23.3 kg (containing 16.1 kg hexoses and 5.0 kg pentoses) and the cellulose fines derived hexoses amounted to 3.4 kg out of 100 kg initial dry pine. When the two liquors containing the hemicellulose sugars and the cellulose fines-derived hexoses were fermented for ethanol production, an ethanol yield of 6.8 kg was obtained.  相似文献   

19.
Isolation and characterization of cellulose nanofibers from banana peels   总被引:2,自引:0,他引:2  
Cellulose nanofibers were isolated from banana peel using a combination of chemical treatments, such as alkaline treatment, bleaching, and acid hydrolysis. The suspensions of chemically treated fibers were then passed through a high-pressure homogenizer 3, 5, and 7 times, to investigate the effect of the number of passages on the properties of the resulting cellulose nanofibers. The cellulose nanofibers isolated in this study had a dry basis yield of 5.1 %. Transmission electron microscopy showed that all treatments effectively isolated banana fibers in the nanometer scale. The micrographs of the process steps used to isolate the nanofibers revealed gradual removal of amorphous components. Increasing number of passages in the homogenizer shortened the cellulose nanofibers while furnishing more stable aqueous suspensions with zeta potential values ranging from ?16.1 to ?44.1 mV. All the samples presented aspect ratio in the range of long nanofibers, hence being potentially applicable as reinforcing agents in composites. X-ray diffraction studies revealed that homogenized nanofiber suspensions were more crystalline than non-homogenized suspensions. Fourier transform infrared spectroscopy confirmed that alkaline treatment and bleaching removed most of the hemicellulose and lignin components present in the banana fibers. Thermal analyses revealed that the developed nanofibers exhibit enhanced thermal properties. In general, the nanoparticles isolated from the banana peel have potential application as reinforcing elements in a variety of polymer composite systems.  相似文献   

20.
A method for conversion of carboxyl groups present on the surface of TEMPO-oxidized cellulose nanofibrils to N-acylureas using carbodiimide was developed. A TEMPO-oxidized cellulose nanofibril with free carboxyl groups (TOCN–COOH) dispersed in N,N-dimethylformamide (DMF) is prepared from a bleached kraft pulp, and then the TOCN–COOH is reacted with either N,N′-diisopropylcarbodiimide (DIC) or N,N′-dicyclohexylcarbodiimide (DCC) under apparently homogeneous conditions. FT-IR and solid-state 13C NMR analyses showed that the reaction products contained N-acylurea groups, and yields were >80%. Conversion ratios of carboxyl groups to N-acylureas are approximately 80 and 60%, when DIC and DCC, respectively, of 5 mol per mole of carboxyl groups are used as the reagents. X-ray diffraction analysis demonstrated that neither crystallinity nor crystal width of the original wood cellulose I structure was changed by the N-acylurea formation. The isolated and never-dried TOCN-N-acylureas are nano-dispersed in DMF but not in i-PrOH or dioxane. Pellets of the TOCN-N-acylureas had water-contact angles of >70°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号