首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of FcCCH (a), HCCCCFc (b) and FcCCCCFc (c) with Ru3(CO)10(NCMe)2 (all) and Ru3(μ-dppm)(CO)10 (b and c only) are described. Among the products, the complexes Ru33-RC2R′)(μ-CO)(CO)9 (R=H, R′=Fc 1, CCFc 2; R=R′=Fc 5), Ru3(μ-H)(μ3-C2CCFc)(μ-dppm)(CO)7 3, Ru33-FcC2CCFc)(μ-dppm)(μ-CO)(CO)7 6 and Ru33-C4Fc2(CCFc)2}(μ-dppm)(μ-CO)(CO)5 7 were characterised, including single-crystal structure determinations for 1, 3, 5 and 7; that of 7 did not differ significantly from an earlier study of a mixed CH2Cl2–C6H6 solvate.  相似文献   

2.
The reaction between RuCl(dppe)Cp* and Me3SiCCC(SiMe3)NNHTs has given the pyrazole derivative (1), which was characterised by a single-crystal X-ray structure determination. Complex 1 is probably formed by attack of the NTs group on the π-complexed desilylated alkyne, with concomitant loss of a proton.  相似文献   

3.
Reactions of Fc′(CHO)21 (Fc′ = 1,1′-ferrocenediyl) with LiCCR gave substituted propargylic alcohols Fc′{CH(OH)CCR}2 (R = SiMe32, Fc 9). Oxidation (MnO2) of these alcohols afforded the bis(alkynyl ketone)s Fc′{C(O)CCR}2 (R = SiMe33, Fc 10), the former being accompanied by the partially desilylated Fc′{C(O)CCH}-1-{C(O)CCSiMe3}-1′ 4. The reaction between 4 and RuCl(dppe)Cp in the presence of Na[BPh4] gave the cyclic vinylidene complex [Ru{CC[C(O)Fc′C(O)CHCH]}(dppe)Cp]BPh45. The diastereomers were separated by flash chromatography (2) or preparative t.l.c. (9) to give the cis (2a, 9a) and trans (2b, 9b) isomers. Cyclisation of each isomer to the corresponding ferrocenophane was catalysed by pTSA to give Fc′{[CH(CCR)]2O} (R = SiMe36a, 6b; Fc 11a, 11b), of which 6a, 6b could be desilylated to Fc′{[CH(CCH)]2O} 7a, 7b, and further transformed into the bis(η2-alkyne-dicobalt) complexes Fc′{[CH(η2-C2H[Co2(μ-dppm)(CO)4])]2O} 8a, 8b with Co2(μ-dppm)(CO)6. Molecular structures of 3, 5, 6a, 6b, 7a, 7b and 10 were determined by single-crystal XRD methods.  相似文献   

4.
Oxidation of [1.1]ferrocenylruthenocenophane with a large excess and 1.5 equivalents of iodine gives dicationic iodo[1.1]ferrocenylruthenocenophanium2+I3 · 0.5I22 (1) and monocationic [1.1]ferrocenylruthenocenophanium+I3 (2) salts respectively. The structures of 1 and 2 were analyzed by single-crystal X-ray diffraction studies. The crystal form of 1 is monoclinic space group C2/c, A = 21.35](5), B = 20.594(5), C = 17.397(4) Å, β = 124.17(1)°, Z = 8, and the final R = 0.068 and Rw = 0.070. The cation formulated as [FeIII(C5H4CH2C5H4)2RuIVI]2+ exists in a syn-conformation as in the cases of the neutral compound. The distance between the RuIV and FeII is 4.656(4) Å, which is much shorter than the value of the neutral compound (4.792(2) Å), and the bond angle of I---RuIV,FeIII is 81.26°. The dihedral angle between the two η5-C5H4 (fulvenide) rings on the RuIV moiety is 37.56° due to the RuIV---I bond (2.758(3) Å). These two rings of FeIII and RuIV moieties are essentially eclipsed. The unit cell has three kinds of I3 (I3a, I3b and I3c) and one I2, and the formula of 1 is given as [FeIII(C5H4CH2CSH4)2RuIVI]2+I3 · 0.5(I3)2 · 0.5I2. The crystal of 2 formulated as [FeIII(C5H4CH2C5H4)2RuII]+I3 is triclinic space group

, and the final R = 0.067 and Rw = 0.068. The unit cell has two independent molecules (unit A and B); i.e. two kinds of distance between the RuII and FeIII, are observed; one (A) is 4.615(3) and the other (B) is 4.647(3) α. The two η5-C5H4 rings of both FeIII and RuII are essentially staggered and the dihedral angles between the rings of FcH and RcH moieties are less than 5.8°. Typical ferrocenium-type broad singlet 57Fe-Mössbauer lines are observed for both salts (1, 2) at all temperatures.  相似文献   

5.
Reactions of H2Os3(CO)10, 3, with the monophosphite-substituted and non-substituted tungsten propargyl and allenyl carbonyl complexes Cp(CO)2LWCH2C≡CH (1a, L = CO; 1b, L = P(OMe)3) and Cp(CO)2LWCH = C = CH2 (2a, L = CO; 2b, L = P(OMe)3) were investigated. In the reaction of 1b with 3, a tetranuclear complex 4b is obtained. The molecules of 4b crystallize as Cp(CO)2[P(OMe)3]W(μ, η1, η2-CH2CH=CH)(μ-H)Os3(CO)l0 in space group PI with a = 9.490 (4), b = 13.072 (7), c = 13.770 (9) Å, α = 91.89 (5), β = 106.71 (5), γ = 104.07(4)°, V = 1577(2) Å3, Z = 2. In the reaction of 2a with 3, from the reaction mixture exposed to air followed by workup using silica-gel packed column chromatography, a complex consisting of two triosmium clusters bridged by a hexadiene ligand from the coupling of allenyl ligand was obtained. The molecules of the hexanuclear complex crystallize as [CH2CH = CH)2(μH)2OS6(CO)20in space group P21/c with a = 14.448 (7), b = 13.689 (4), c = 19.224 (4) Å, β = 107.14(3)°, V = 3633 (2) Å Z = 4.  相似文献   

6.
The sequential conversion of [OsBr(cod)Cp*] (9) to [OsBr(dppe)Cp*] (10), [Os([=C=CH2)(dppe)Cp*]PF6 ([11]PF6), [Os(C triple bond CH)(dppe)Cp*] (12), [{Os(dppe)Cp*}2{mu-(=C=CH-CH=C=)}][PF6]2 ([13](PF6)2) and finally [{Os(dppe)Cp*}(2)(mu-C triple bond CC triple bond C)] (14) has been used to make the third member of the triad [{M(dppe)Cp*}2(mu-C triple bond CC triple bond C)] (M = Fe, Ru, Os). The molecular structures of []PF6, 12 and 14, together with those of the related osmium complexes [Os(NCMe)(dppe)Cp*]PF6 ([15]PF6) and [Os(C triple bond CPh)(dppe)Cp*] (16), have been determined by single-crystal X-ray diffraction studies. Comparison of the redox properties of 14 with those of its iron and ruthenium congeners shows that the first oxidation potential E1 varies as: Fe approximately Os < Ru. Whereas the Fe complex has been shown to undergo three sequential 1-electron oxidation processes within conventional electrochemical solvent windows, the Ru and Os compounds undergo no fewer than four sequential oxidation events giving rise to a five-membered series of redox related complexes [{M(dppe)Cp*}2(mu-C4)]n+ (n = 0, 1, 2, 3 and 4), the osmium derivatives being obtained at considerably lower potentials than the ruthenium analogues. These results are complimented by DFT and DT DFT calculations.  相似文献   

7.
Four triosmium carbonyl clusters bearing terminal pyrazines, bridging hydroxy and methoxycarbonyl ligands of general formula [Os3(CO)9(μ-OH)(μ-OMeCO)L] (1, L = pyrazine; 2, L = 2-methylpyrazine; 3, L = 2,3-dimethylpyrazine; 4, L = 2,3,5-trimethylpyrazine) were synthesized by the reactions of [Os3(CO)12] with the corresponding pyrazine derivatives and water in the presence of a methanolic solution of Me3NO in moderate yields. Compounds [Os3(CO)9(μ-OH)(μ-OMeCO)L] react with a series of two electron donor ligands, L′ at ambient temperature to give [Os3(CO)9(μ-OH)(μ-OMeCO)L′] (5, L′ = PPh3; 6, L′ = P(OMe)3; 7, L′ = tBuNC; 8, L′ = C5H5N) in good yields by the displacement of the pyrazine ligands. This implies that the pyrazine ligands in 1–4 are relatively labile. Compounds 2, 3, 4, and 8 were characterized by single crystal X-ray diffraction analyses. All the four compounds possess two metal–metal bonds and a non-bonded separation of two osmium atoms defined by Os(1)Os(3), which are simultaneously bridged by OH and MeOCO ligands and a heterocyclic ligand is terminally coordinated to one of the two non-bonded osmium atoms.  相似文献   

8.
The complex Ru{c-CCArC(O)C(O)O}(dppe)Cp∗ [Ar = 2,4-(NO2)2C6H3] 2, containing a dihydrofuran-3,4-dione ligand, was obtained from a reaction between the strong nucleophile Ru(CCH)(dppe)Cp∗ 1 and bis(2,4-dinitrophenyl) oxalate. The X-ray determined molecular structure of 2 is reported, together with a plausible route for its formation.  相似文献   

9.
The Ru(II) complexes cis-[Ru(L)Cl2] (C1-C3) of novel tetradentate NSNN ligands (L) {where L is C5H4N-CH2-S-C6H4NC(COCH3)-NN-C6H4X, and X is H (L1), CH3 (L2) and Br (L3)}, were synthesized and characterized by spectroscopy (IR, UV/vis and NMR), cyclic voltammetry and crystallography. The tetradentate ligands were isolated as the amidrazones H2L {where H2L is C5H4N-CH2-S-C6H4NH-C(COCH3)N-NH-C6H4X and X is H (H2L1), CH3 (H2L2) and Br (H2L3)} as shown by crystallography of H2L1, but oxidize to azoimines during the formation of the Ru(II) complexes. A crystallographic analysis of C1 showed that the Ru(II) centre is in a distorted octahedral coordination sphere in which the tetradentate ligand occupies three equatorial sites and one axial site (two azoimine nitrogens and a thio sulfur in the equatorial plane and an axial pyridine nitrogen) and two chlorides occupying axial and equatorial coordination sites. The Ru(II) oxidation state is greatly stabilized by the novel tetradentate ligand, showing Ru(III/II) couples ranging from 1.43 to 1.51 V. The absorption spectrum of C1 in acetonitrile was modelled by time-dependent density functional theory.  相似文献   

10.
The reaction of Cp2*UCl2 with HNSPh2 produces Cp2*UCl2(HNSPh2), which is the first structurally characterized complex of a sulfilimine. The hydrolysis of Cp2*UCl2(HNSPh2) with HNSPh2 · H2O yields a tetrauranium cluster whose heavy atom structure has been determined by x-ray diffraction and which is formulated as a UIV/UV complex: [Cp*(Cl)(HNSPh2)U(μ3-O)(μ2-O)2U(Cl)(HNSPh2)2]2.  相似文献   

11.
The complex (ptppf)Fe(CO)3 has been prepared in high yield by the reaction of ptppf, l-(diphenyl-phosphino)-l'-(phenylthio)ferrocene, with (cis-cyclooctene)2-Fe(CO)3 in THF at ?60°C. The complex has been characterized by IR, 31P NMR, mass spectrometry and single-crystal X-ray diffraction. This compound is the first example of a ferrocenyl ligand having both sulfur and phosphorus donor atoms bound to a Fe(CO)3 moiety. X-ray crystallography shows that the two cyclopentadienyl rings are approximately eclipsed, a rotation of 13° from exactly eclipsed conformation. The tricarbonyl iron center has a trigonal bipyramidal geometry with sulfur occupying the equatorial site and phosphorus the axial site. Crystals of (ptppf)Fe(CO)3 are monoclinic, with a = 11.645(2), b = 14.304(1), c = 17.075(2) Å,β = 109.23(3)°, Z = 4, and space group P 21/n. The structure was solved according to the heavy-atom method and refined by full-matrix least-squares procedures to R = 0.037 for 2098 reflections with I ≥ 2.5σ(I).  相似文献   

12.
The difurylphosphido-bridged dinuclear complex [Ru2(CO)6(μ-PFu2)(μ-η12-Fu)] (Fu = 2-furyl) 1 readily reacts with two equivalents of each of the terminal alkynes HC≡CR (R = Fc, p-C6H4Fc, p-C6H4NO2, Fc = Fe(η5-C5H5)(η5-C5H4)) by an interesting head-to-tail ynyl coupling with a furan group to form a series of phosphido-bridged diruthenium compounds containing a novel furyl-substituted C4 hydrocarbyl chain of stoichiometry [Ru2(CO)4(μ-PFu2){μ-η1123-RCC(H)C(R)C(H)Fu}] (R = Fc 2, p-C6H4Fc 3, p-C6H4NO2 4) in moderate to good yields. Reaction of 1 with an equimolar amount of HC≡CFc and HC≡C(p-C6H4NO2) afforded a pair of isomers of [Ru2(CO)4(μ-PFu2){μ-η1123-R1CC(H)C(R2)C(H)Fu}] (R1 = Fc, R2 = p-C6H4NO2 5a; R1 = p-C6H4NO2, R2 = Fc 5b) together with a small mixture of 4. X-ray crystal structures of 2, 3, 5a and 5b are reported. All of these new alkyne-derived dinuclear complexes are electron precise with 34 cluster valence electrons in which the μ-η12-furyl ligand acts as a three-electron donor and the μ-phosphido Ru2 framework is retained in the products upon alkyne coupling reactions. The resulting organic fragment of each complex is coordinated to the Ru atoms via a π, a π-allyl and two σ bonds, and donates seven electrons to the metal core. Dedicated to the memory of Professor F. Albert Cotton.  相似文献   

13.
A new chloride-dimethylsulfoxide-ruthenium(III) complex with nicotine trans-[RuIIICl4(DMSO)[H-(Nicotine)]] (1) and three related iridium(III) complexes; [H-(Nicotine)]trans-[IrIIICl4(DMSO)2] (2), trans-[IrIIICl4(DMSO)[H-(Nicotine)]] (3) and mer-[IrIIICl3(DMSO)(Nicotine)2] (4) have been synthesized and characterized by spectroscopic techniques and by single crystal X-ray diffraction (1, 2, and 4). Protonated nicotine at pyrrolidine nitrogen is present in complexes 1 and 3 while two neutral nicotine ligands are observed in 4. In these three inner-sphere complexes coordination occurs through the pyridine nitrogen. Moreover, in the outer-sphere complex 2, an electrostatic interaction is observed between a cationic protonated nicotine at the pyrrolidine nitrogen and the anionic trans-[IrIIICl4(DMSO)2]¯ complex.  相似文献   

14.
The diazadiene complex of trivalent ytterbium, Cp2Yb(DAD) (1) (DAD=But−N=CH−CH=N−But) was prepared according to three different procedures, namely, by oxidation of Cp2Yb(THF)2 with diazadiene in THF, by the reaction of Cp2YbCl with DAD2−Na+ 2 taken in a ratio of 2∶1, and by the reaction of Cp2YbCl(THF) with DAD2−Na+ 2 taken in a ratio of 1∶1. Complex1 was characterized by microanalysis, IR spectroscopy, magnetochemistry, and X-ray diffraction analysis. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 384–386, February, 1999.  相似文献   

15.
A series of heterobinuclear ferrocene-ruthenium complexes Fc(CHCH)nRuCl(CO)(PMe3)3 (n = 1, 3; n = 2, 12), Fc(CHCH)RuCl(CO)(Py)(PPh3)2 (4), and trimetallic Fc(CHCH)RuCl(CO)(PPh3)2(Py-E-(CHCH)Fc) (6) have been prepared. The length of the molecular rods is extended by successive insertion of CHCH spacers in the bridging ligands or the ancillary ligands. The respective products have been fully characterized and the structures of 3 and 12 have been established by X-ray crystallography. Electrochemical studies have revealed that ethenyl heterobimetallic complexes display two successive one-electron processes, and that intermetallic electronic communication between the two endgroups is attenuated with the increase of the length of the conjugated bridge. The electrochemical behavior of the trimetallic complex reveals strong electronic communication between ruthenium and ferrocene transmitted through the ethenyl bridge, however, it also reveals a very weak interaction between ruthenium and ferrocene transmitted through the (E)-CHCH-Py bridge.  相似文献   

16.
17.
The compounds Ru(CCCCFc)(PP)Cp [PP = dppe (1), dppm (2)], have been obtained from reactions between RuCl(PP)Cp and FcCCCCSiMe3 in the presence of KF (1) or HCCCCFc and K[PF6] (2), both with added dbu. The dppe complex reacts with Co2(CO)6(L2) [L2 = (CO)2, dppm] to give 3, 4 in which the Co2(CO)4(L2) group is attached to the outer CC triple bond. The PPh3 analogue of 3 (5) has also been characterised. In contrast, tetracyanoethene reacts to give two isomeric complexes 6 and 7, in which the cyano-olefin has added to either CC triple bond. The reaction of RuCl(dppe)Cp with HCCCCFc, carried out in a thf/NEt3 mixture in the presence of Na[BPh4], gave [Ru{CCC(NEt3)CHFc}(dppe)Cp]BPh4 (8), probably formed by addition of the amine to an (unobserved) intermediate butatrienylidene [Ru(CCCCHFc)(dppe)Cp]+. The reaction of I2 with 8 proceeds via an unusual migration of the alkynyl group to the Cp ring to give [RuI(dppe){η-C5H4CCC(NEt3)CHFc}]I3 (9). Single-crystal X-ray structural determinations of 1, 2 and 4-9 are reported.  相似文献   

18.
The Pd(0)/Cu(I)-catalysed reactions between Co33-CBr) (CO)9 and W(CCCCH)(CO)3Cp gives the C5 complex {Cp(OC)3W}CCCCC{Co3(CO)9} (2). Similarly, Co33-CBr)(μ-dppm)(CO)7 and W(CCCCH)(CO)3Cp or Ru(CCCCH)(dppe)Cp* give {Cp(OC)3W}CCCCC{Co3(μ-dppm)(CO)7} and {Cp*(dppe)Ru}CCCCC{Co3(μ-dppmn)(CO)7} (5). An attempt to prepare a C3 analogue from Ru(CCH)(PPh3)2Cp and Co33-CBr)(CO)9 gave instead the acyl derivative {Cp(Ph3P)2Ru}CCC(O)C{Co3(CO)8(PPh3)} (7). The X-ray structures of 2, 5 and 7 are reported: the C5 chains in 2 and 5 have an essentially unperturbed -CC-CC-C formulation.  相似文献   

19.
Five trinuclear substituted complexes of the type Ru3(CO)11L, Ru3(CO)10L2 and Ru3(CO)9L3 were synthesised by the reaction of Ru3(CO)12 with fluorine substituted phosphine ligands, {P(C6H4F-m)3 and P(C6H4F-p)3}, using the radical anion catalysed method. The structures of the resulting clusters were elucidated by means of elemental analyses and spectroscopic methods, which included IR, 1H, 13C and 31P NMR spectroscopy. X-ray crystallographic studies of four of the complexes were carried out. In all the complexes, the ligand occupies an equatorial position due to steric reasons, and coordination of the ligand is observed only at the phosphorus atom. In the two monosubstituted complexes, Ru3(CO)11P(C6H4F-m)3 and Ru3(CO)11P(C6H4F-p)3, the effect of substitution resulted in an increase in the Ru-Ru distances. Out of the three Ru-Ru bonds, the one which is cis to the ligand is noticeably longer than the other two. The asymmetric unit of the disubstituted complex Ru3(CO)10{P(C6H4F-p)3}2 is composed of two molecules, A and B. As expected, the two phosphorus ligands are equatorially bonded to two different ruthenium atoms. The asymmetric unit of the trisubstituted complex is composed of one molecule of Ru3(CO)9{P(C6H4F-m)3}3 and one disordered solvent molecule. The structure consists of one triangular ruthenium complex in which each of the phosphorus ligands is equatorially bonded to three different ruthenium atoms. In the structure, disorder of the fluorine atoms is observed. Bond parameters, especially bond lengths and bond angles, are correlated to the structure and also are compared with the literature data of similar compounds.  相似文献   

20.
New chlorido-dimethylsulfoxide-ruthenium(III) complexes with different N6-substituted adenines have been prepared and characterized. Three ruthenium complexes have been structurally characterized by X-ray diffraction crystallography: [RuIIICl4(DMSO)[H-(N6-pentyladenine)]] (1), [RuIIICl4(DMSO)[H-(N6-hexyladenine)]] (2) and [RuIIICl4(DMSO)[H-(N6,N6-dibutyladenine)]] (3). In all cases ruthenium ion show octahedral geometry coordinated to four chlorido ligands and one S coordinated sulfoxide (DMSO). The coordination sphere is completed by an adenine moiety coordinated to Ru(III) via N(9) and protonated at N(3). Other similar complexes have been obtained with N6-propyladenine, [RuIIICl4(DMSO)[H-(N6-propyladenine)]] · 0.5EtOH (4) and N6-benzylaminopurine (BAP) [RuIIICl4(DMSO)[H-(BAP)]] · 0.5H2O (5) which have been spectroscopically characterized. Otherwise, in different reaction conditions, we have obtained an out sphere complex of Ru(II), [H-(BAP)][RuIICl3(DMSO)3] (6), with identical complex unit than the structurally solved [H-(creat)][RuIICl3(DMSO)3] (7) which was included for comparison purposes. Preliminary electrophoretic mobility and atomic force microscopy (AFM) studies of the interaction between Ru(III) compounds and plasmidic DNA pBR322 have been performed. These results show different morphological changes in plasmidic DNA forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号