首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of 1 mol equiv. each of [Ru(PPh3)3Cl2] and N-(acetyl)-N′-(5-R-salicylidene)hydrazines (H2ahsR, R = H, OCH3, Cl, Br and NO2) in alcoholic media afford simultaneously two types of complexes having the general formulae [Ru(HahsR)(PPh3)2Cl2] and [Ru(ahsR)(PPh3)2Cl]. The complexes have been characterized by elemental analysis, magnetic, spectroscopic and electrochemical measurements. Molecular structures of [Ru(HahsH)(PPh3)2Cl2] and [Ru(ahsH)(PPh3)2Cl] have been confirmed by X-ray crystallography. In both species, the PPh3 ligands are trans to each other. The bidentate HahsH coordinates to the metal ion via the O atom of the deprotonated amide and the imine–N atom in [Ru(HahsH)(PPh3)2Cl2]. In HahsH, the phenolic OH is involved in a strong intramolecular hydrogen bond with the uncoordinated amide N atom forming a seven-membered ring. In [Ru(ahsH)(PPh3)2Cl], the tridentate ahsH2− binds to the metal ion via the deprotonated amide O, the imine N and the phenolate O atoms. In the electronic spectra, the green [Ru(HahsR)(PPh3)2Cl2] and brown [Ru(ahsR)(PPh3)2Cl] complexes display several absorptions in the ranges 385–283 and 457–269 nm, respectively. Both complexes are low-spin and display rhombic EPR spectra in frozen solutions. Both types of complexes are redox active and display a quasi-reversible ruthenium(III) to ruthenium(II) reduction which is sensitive to the polar effect of the substituent on the chelating ligand. The reduction potentials are in the ranges −0.21 to −0.12 and −0.42 to −0.21 V (versus Ag/AgCl) for [Ru(HahsR)(PPh3)2Cl2] and [Ru(ahsR)(PPh3)2Cl], respectively.  相似文献   

2.
The reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip, or mor) and dehydroacetic acid thiosemicarbazone (abbreviated as H2dhatsc where H2 stands for the two dissociable protons) in benzene under reflux afford a series of new ruthenium(II) carbonyl complexes containing dehydroacetic acid thiosemicarbazone of general formula [Ru(dhatsc)(CO)(B)(EPh3)] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip or mor; dhatsc = dibasic tridentate dehydroacetic acid thiosemicarbazone). All the complexes have been characterized by elemental analyses, FT-IR, UV-Vis, and 1H NMR spectral methods. The thiosemicarbazone of dehydroacetic acid behaves as dianionic tridentate O, N, S donor and coordinates to ruthenium via phenolic oxygen of dehydroacetic acid, the imine nitrogen of thiosemicarbazone and thiol sulfur. In chloroform solution, all the complexes exhibit metal-to-ligand charge transfer transitions (MLCT). The crystal structure of one of the complexes [Ru(dhatsc)(CO)(PPh3)2] (1) has been determined by single crystal X-ray diffraction which reveals the presence of a distorted octahedral geometry in the complexes. All the complexes exhibit an irreversible oxidation (RuIII/RuII) in the range 0.76-0.89 V and an irreversible reduction (RuII/RuI) in the range −0.87 to −0.97 V. Further, the free ligand and its ruthenium complexes have been screened for their antibacterial and antifungal activities. The complexes show better activity in inhibiting the growth of bacteria Staphylococcus aureus and Escherichia coli and fungus Candida albicans and Aspergillus niger. These results made it desirable to delineate a comparison between free ligand and its ruthenium complexes.  相似文献   

3.
Exchange of PMe2Ph for PPh3 in (η5-pentadienyl)ruthenium{bis(triphenylphosphine)}chloride, (η5-C5H7)Ru(PPh3)2Cl (1) under first order conditions proceeds rapidly in THF at room temperature. A pseudo-first order rate constant of 17 ± 2 × 10−4 s−1 is obtained for the reaction at 21 °C. The rate constant is essentially independent of the phosphine concentration. The activation parameters, ΔH = 16.1 ± 0.4 kcal mol−1 and ΔS = −16 ± 1 cal K−1 mol−1 differ from those reported for phosphine exchange in CpRu(PPh3)2Cl (2) and (η5-indenyl)Ru(PPh3)2Cl (3). The reaction of 1 with PMe2Ph is about 70 times faster than the reaction of 2 at 30 °C and some 40 times faster than the reaction of 3 at 20 °C. (η5-C5H7)Ru(PPh3)2Cl(1) is more active than the ruthenium(II) complexes 2, 3, and TpRu(PPh3)2Cl (4) in the catalytic dimerization of terminal alkynes with nearly quantitative conversion of PhCCH and FcCCH at ambient temperature in 24 h. The enhanced substitution rate is accompanied by >50% conversion of phenylacetylene to oligomeric products. Reaction of 1 with NaPF6 in acetonitrile yields the cationic ruthenium(II) complex [(η5-C5H7)Ru(PPh3)2(CH3CN)][PF6] (7). The latter complex is much less active in reactions with phenylacetylene than 1 but avoids the formation of oligomeric products.  相似文献   

4.
Twelve ruthenium(III) complexes bearing amine-bis(phenolate) tripodal ligands of general formula [Ru(L1–L3)(X)(EPh3)2] (where L1–L3 are dianionic tridentate chelator) have been synthesized by the reaction of ruthenium(III) precursors [RuX3(EPh3)3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr3(PPh3)2(CH3OH)] with the tripodal tridentate ligands H2L1, H2L2 and H2L3 in benzene in 1:1 molar ratio. The newly synthesized complexes have been characterized by analytical (elemental and magnetic susceptibility) and spectral methods. The complexes are one electron paramagnetic (low-spin, d5) in nature. The EPR spectra of the powdered samples at RT and the liquid samples at LNT shows the presence of three different ‘g’ values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. The redox potentials indicate that all the complexes undergo one electron transfer process. The catalytic activity of one of the complexes [Ru(pcr-chx)Br(AsPh3)2] was examined in the transfer hydrogenation of ketones and was found to be efficient with conversion up to 99% in the presence of isopropanol/KOH.  相似文献   

5.
A series of mononuclear organoruthenium complexes of the type [RuX(PPh3)2(L)] (X = Cl or Br; L = 2-(arylazo)phenolate ligand) have been synthesized from the reaction of five 2-(arylazo)phenol ligands with ruthenium(III) precursors, viz. [RuCl3(PPh3)3] and [RuBr3(PPh3)2(CH3OH)] in benzene under reflux. In all these reactions, the 2-(arylazo)phenolate ligand replaces one triphenylphosphine molecule, two chlorides or bromides and one methanol from the precursors leading to five-membered cyclometallated species. The 2-(arylazo)phenol ligands behave as dianionic tridentate C, N, O donors and coordinated to ruthenium by dissociation of the phenolic proton and the phenyl proton at the ortho position of the phenyl ring. The compositions of the complexes have been established by elemental analysis, magnetic susceptibility measurement, FT-IR, UV-Vis and EPR spectral data. These complexes are paramagnetic and shows intense d-d and charge transfer transitions in chloroform. The solution EPR spectrum of the complex 7 in dichloromethane at 77 K shows rhombic distortion around the ruthenium ion. The structural conformation of the complex 1 has been carried out by X-ray crystallography. The redox behavior of the complexes has been investigated by cyclic voltammetry and the potentials are observed with respect to the electronic nature of substituents (R) in the 2-(arylazo) phenolate ligands. These complexes catalyze transfer hydrogenation of benzophenone to benzhydrol with up to 99.5% in the presence of i-prOH/KOH. Further, these complexes have shown great promise in inhibiting the growth of both Gram +ve and Gram −ve bacteria, viz. Staphylococcus aureus NCIM 2079 and Escherichia coli NCIM 2065 and fungus Candida albicans NCIM 3102.  相似文献   

6.
The reactions of [Ru(H)(Cl)(CO)(PPh3)3] with 3,5-di-tert-butyl-o-benzoquinone (dbq) and 3,4,5,6-tetrachloro-o-benzoquinone (tcq) have afforded the corresponding semiquinone complexes [RuII(dbsq)(Cl)(CO)(PPh3)2] and [RuII(tcsq)(Cl)(CO)(PPh3)2], respectively. The reaction of [Ru(H)2(CO)(PPh3)3] with tcq has furnished [RuII(tcsq)(H)(CO)(PPh3)2]. Structure determination of [Ru(dbsq)(Cl)(CO)(PPh3)2] has revealed that it is a model semiquinonoid chelate with two equal C---O lengths ( 1.291(6) and 1.296(6) Å). The complexes are one-electron paramagnetic (1.85μB) and their EPR spectra in fluid media display a triplet structure (g2.00) due to superhyperfine coupling with two trans-31P atoms (Aiso17 G). The stretching frequency of the CO ligand increases by 20 cm−1 in going from [Ru(dbsq)(Cl)(CO)(PPh3)2] to [Ru(tcsq)(Cl)(CO)(PPh3)2] consistent with electron withdrawal by chloro substituents. For the same reason the E1/2 values of the cyclic voltammetric quinone/semiquinone and semiquinone/catechol couples undergo a shift of 500 mV to higher potentials between [Ru(dbsq)(Cl)(CO)(PPh3)2] and [Ru(tcsq)(Cl)(CO)(PPh3)2].  相似文献   

7.
Ortho-metallated ruthenium(III) complexes with Schiff bases (H2L) derived from one mole equivalent each of benzaldehyde and acid hydrazides are described. Reactions of H2L with [Ru(PPh3)3Cl2] in presence of NEt3 (1:1:2 mole ratio) under aerobic conditions in methanol provide the complexes having the general formula trans-[Ru(L)(PPh3)2Cl] in 55-60% yields. The complexes have been characterized with the help of elemental analysis, magnetic susceptibility, electrochemical and various spectroscopic (infrared, electronic and EPR) measurements. The +3 oxidation state of the metal centre in these complexes is confirmed by their one-electron paramagnetic nature. Molecular structures of two representative complexes have been determined by X-ray crystallography. In each complex, the metal ion is in a distorted octahedral CNOClP2 coordination sphere. The dianionic C,N,O-donor ligand (L2−) together with the chloride form a CNOCl square-plane and the P-atoms of the two PPh3 molecules occupy the two axial sites. The electronic spectra of the complexes in dichloromethane solutions display several absorptions due to ligand-to-metal charge transfer and ligand centred transitions. In dichloromethane solutions, the complexes display a ruthenium(III) → ruthenium(IV) oxidation in the potential range 0.35-0.98 V (vs. Ag/AgCl). All the complexes in frozen (110 K) dichloromethane-toluene (1:1) solutions display rhombic EPR spectra.  相似文献   

8.
Paramagnetic Ru(III) complexes of the type [RuX2(EPh3)2(L)] (where X = Cl or Br; E = P or As; L = monobasic bidentate benzophenone ligand) have been synthesized from the reaction of ruthenium(III) precursors, viz. [RuX3(EPh3)3] (where X = Cl, E = P; X = Cl or Br, E = As) or [RuBr3(PPh3)2(CH3OH)] and substituted hydroxy benzophenones in a 1:1 molar ratio in benzene under reflux for 6 h. The hydroxy benzophenone ligands behave as monoanionic bidentate O,O donors and coordinate to ruthenium through the phenolate oxygen and ketonic oxygen atoms, generating a six-membered chelate ring. The compositions of the complexes have been established by analytical and spectral (FT-IR, UV-Vis, EPR) and X-ray crystallography methods. The single crystal structure of the complex [RuCl2(PPh3)2(L1)] (1) has been determined by X-ray crystallography and indicates the presence of a distorted octahedral geometry in these complexes. The magnetic moment values of the complexes are in the range 1.75-1.89 μB, which reveals the presence of one unpaired electron in the metal ion. EPR spectra of liquid samples at liquid nitrogen temperature (LNT) show a rhombic distortion (gx ≠ gy ≠ gz) around the ruthenium ion. The complexes are redox active and display quasi-reversible oxidation and quasi-reversible reduction waves versus Ag/AgCl.  相似文献   

9.
Reaction of 2-(phenylazo)pyridine (pap) with [Ru(PPh3)3X2] (X = Cl, Br) in dichloromethane solution affords [Ru(PPh3)2(pap)X2]. These diamagnetic complexes exhibit a weakdd transition and two intense MLCT transitions in the visible region. In dichloromethane solution they display a one-electron reduction of pap near − 0.90 V vs SCE and a reversible ruthenium(II)-ruthenium(III) oxidation near 0.70 V vs SCE. The [RuIII(PPh3)2(pap)Cl2]+ complex cation, generated by coulometric oxidation of [Ru(PPh3)2(pap)Cl2], shows two intense LMCT transitions in the visible region. It oxidizes N,N-dimethylaniline and [RuII(bpy)2Cl2] (bpy = 2,2′-bipyridine) to produce N,N,N′,N′-tetramethylbenzidine and [RuIII(bpy)2Cl2]+ respectively. Reaction of [Ru(PPh3)2(pap)X2] with Ag+ in ethanol produces [Ru(PPh3)2(pap)(EtOH)2]2+ which upon further reaction with L (L = pap, bpy, acetylacetonate ion(acac) and oxalate ion (ox2−)) gives complexes of type [Ru(PPh3)2(pap)(L)]n+ (n = 0, 1, 2). All these diamagnetic complexes show a weakdd transition and several intense MLCT transitions in the visible region. The ruthenium(II)-ruthenium(III) oxidation potential decreases in the order (of L): pap > bpy > acac > ox2−. Reductions of the coordinated pap and bpy are also observed.  相似文献   

10.
Reactions of [Ru(PPh3)3Cl2] with 2-(benzylimino-methyl)-4-R-phenol (HRL, R = H, Cl, Br and OMe) in boiling methanol in presence of triethylamine afford ruthenium(II) complexes of general formula [Ru(RL)(PPh3)2(CO)Cl] in 57-64% yield. Microanalysis, spectroscopic (infrared, electronic and NMR) and cyclic voltammetric measurements have been used for the characterization of the complexes. Crystal structures of two representative complexes have been determined by X-ray crystallography. The carbonyl, the chloride, the N,O-donor RL and the two mutually trans PPh3 molecules assemble a distorted octahedral CClNOP2 coordination sphere around the metal centre in each complex. The complexes display the Ru(II) → Ru(III) oxidation in the potential range 0.62-1.16 V (vs. Ag/AgCl).  相似文献   

11.
Density functional calculations with the B3LYP functional were carried out for the [Ru(NO)Cl5]2−, [Ru(NO)(NH3)5]3+, [Ru(NO)(CN)5]2−, [Ru(NO)(CN)5]3−, [Ru(NO)(hedta)]q (hedta = N-(hydroxyethyl)ethylenediaminetriacetate triple-charged anion; q = 0, −1, −2), Rh2(O2CR)4, Rh2(O2CR)4(NO)2, Ru2(O2CR)4, Ru2(O2CR)4(NO)2, Ru2(dpf)4, and Ru2(dpf)4(NO)2 (dpf = N,N′-diphenylformamidinate ion; R = H, CH3, CF3) complexes. The electronic structure was analyzed in terms of Mayer and Wiberg bond order indices. The technique of bond order indices decomposition into σ-, π-, and δ-contributions was proposed.  相似文献   

12.
Reaction of 1-(2′-pyridylazo)-2-naphthol (Hpan) with [Ru(dmso)4Cl2] (dmso = dimethylsulfoxide), [Ru(trpy)Cl3] (trpy = 2,2′,2″-terpyridine), [Ru(bpy)Cl3] (bpy = 2,2′-bipyridine) and [Ru(PPh3)3Cl2] in refluxing ethanol in the presence of a base (NEt3) affords, respectively, the [Ru(pan)2], [Ru(trpy)(pan)]+ (isolated as perchlorate salt), [Ru(bpy)(pan)Cl] and [Ru(PPh3)2(pan)Cl] complexes. Structures of these four complexes have been determined by X-ray crystallography. In each of these complexes, the pan ligand is coordinated to the metal center as a monoanionic tridentate N,N,O-donor. Reaction of the [Ru(bpy)(pan)Cl] complex with pyridine (py) and 4-picoline (pic) in the presence of silver ion has yielded the [Ru(bpy)(pan)(py)]+ and [Ru(bpy)(pan)(pic)]+ complexes (isolated as perchlorate salts), respectively. All the complexes are diamagnetic (low-spin d6, S = 0) and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on all the complexes shows a Ru(II)–Ru(III) oxidation on the positive side of SCE. Except in the [Ru(pan)2] complex, a second oxidative response has been observed in the other five complexes. Reductions of the coordinated ligands have also been observed on the negative side of SCE. The [Ru(trpy)(pan)]ClO4, [Ru(bpy)(pan)(py)]ClO4 and [Ru(bpy)(pan)(pic)]ClO4 complexes have been observed to bind to DNA, but they have not been able to cleave super-coiled DNA on UV irradiation.  相似文献   

13.
A series of octahedral RuII/RuIII complexes of the type [Ru(Y)(CO)(BAX)(PPh3)2] and [RuCl2(BAX)(PPh3)2] (Y = H or Cl; BAX = benzaldehydeacetylhydrazone anion; X = H, Me, OMe, OH, Cl or NO2) have been prepared and characterised by spectral, magnetic and cyclic voltammetric studies. The RuII complexes are low spin diamagnetic (S = 0) whereas the RuIII complexes are low spin and paramagnetic (S = 1/2). These RuII and RuIII complexes absorb in the visible region respectively at ca. 16,000 and 28,000 cm–1 which bands are assigned to the MLCT. The correlation of the max values of the RuIII complexes with the + Hammett parameter, is linear, indicating the profound effect of substituents on the electron density of the central metal. I.r. spectral data reveals that the hydrazone is chelated to ruthenium through the hydrazinic nitrogen and the deprotonated enolic oxygen. The rhombic nature of the e.s.r. spectra of the RuIII complexes indicates an asymmetry in the electronic environment around the Ru atom. RuII complexes in CH2Cl2 show an irreversible RuII/III redox couple at ca. 0.9–0.5 V, while the RuIII complexes show two reversible redox couples in the –0.1–0.1 and 0.8–0.6 V range, indicating that the higher oxidation state of ruthenium is stabilised by hydrazones.  相似文献   

14.
Reactions of [Ru(PPh3)3Cl2] with ROCS2K in THF at room temperature and at reflux gave the kinetic products trans-[Ru(PPh3)2(S2COR)2] (R = nPr 1, iPr 2) and the thermodynamic products cis-[Ru(PPh3)2(S2COR)2] (R = nPr 3, iPr 4), respectively. Treatment of [RuHCl(CO)(PPh3)3] with ROCS2K in THF afforded [RuH(CO)-(S2COR)(PPh3)2] (R = nPr 5, iPr 6) as the sole isolable products. Reaction of [RuCl2(PPh3)3] with tetramethylthiuram disulfide [Me2NCS2]2 gave a Ru(III) dithiocarbamate complex, [Ru(PPh3)2(S2CNMe2)Cl2] (7). This reaction involved oxidation of ruthenium(II) to ruthenium(III) by the disulfide group in [Me2NCS2]2. Treatment of 7 with 1 equiv. of [M(MeCN)4][ClO4] (M = Cu, Ag) gave the stable cationic ruthenium(III)-alkyl complexes [Ru{C(NMe2)QC(NMe2)S}(S2CNMe2)(PPh3)2][ClO4] (Q = O 8, S 9) with ruthenium-carbon bonds. The crystal structures of complexes 1, 2, 4·CH2Cl2, 6, 7·2CH2Cl2, 8, and 9·2CH2Cl2 have been determined by single-crystal X-ray diffraction. The ruthenium atom in each of the above complexes adopts a pseudo-octahedral geometry in an electron-rich sulfur coordination environment. The 1,1′-dithiolate ligands bind to ruthenium with bite S-Ru-S angles in the range of 70.14(4)-71.62(4)°. In 4·CH2Cl2, the P-Ru-P angle for the mutually cis PPh3 ligands is 103.13(3)°, the P-Ru-P angles for other complexes with mutually trans PPh3 ligands are in the range of 169.41(4)-180.00(6)°. The alkylcarbamate [C(NMe2)QC(NMe2)S] (Q = O, S) ligands in 8 and 9 are planar and bind to the ruthenium centers via the sulfur and carbon atoms from the CS and NC double bonds, respectively. The Ru-C bond lengths are 1.975(5) and 2.018(3) Å for 8 and 9·2CH2Cl2, respectively, which are typical for ruthenium(III)-alkyl complexes. Spectroscopic properties along with electrochemistry of all complexes are also reported in the paper.  相似文献   

15.
New polypyridyl osmium(II) complexes [Os(κ3-tptz)(EPh3)2Cl]BF4 (E = P, 1; As, 2) with group 15 donor ligands are reported. Structural studies on the representative complex [Os(κ3-tptz)(PPh3)2Cl]BF4 revealed formation of helical racemates with sidewise stacking of right and left-handed anti-parallel helical strands. Salient structural features and DNA binding studies along with binding constant [6.6 × 103 M−1] and site size [0.12] of the complex 1 with calf thymus (ct) DNA by absorption spectroscopy are described.  相似文献   

16.
Diamagnetic ruthenium(II) complexes of the type [Ru(L)(CO)(B)(EPh3)] [where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip and L = dibasic tridentate ligands dehydroacetic acid semicarbazone (abbreviated as dhasc) or dehydroacetic acid phenyl thiosemicarbazone (abbreviated as dhaptsc)] were synthesized from the reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip) with different tridentate chelating ligands derived from dehydroacetic acid with semicarbazide or phenylthiosemicarbazide. All the complexes have been characterized by elemental analysis, FT-IR, UV–Vis and 1H NMR spectral methods. The coordination mode of the ligands and the geometry of the complexes were confirmed by single crystal X-ray crystallography of one of the complexes [Ru(dhaptsc)(CO)(PPh3)2] (5). All the complexes are redox active and are monitored by cyclic voltammetric technique. Further, the catalytic efficiency of one of the ruthenium complexes (5) was determined in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide.  相似文献   

17.
Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm.  相似文献   

18.
The mononuclear η5-cyclopentadienyl complexes [(η5-C5H5)Ru(PPh3)2Cl], [(η5-C5H5)Os(PPh3)2Br] and pentamethylcyclopentadienyl complex [(η5-C5Me5)Ru(PPh3)2Cl] react in the presence of 1 eq. of the tetradentate N,N′-chelating ligand 3,5-bis(2-pyridyl)pyrazole (bpp-H) and 1 eq. of NH4PF6 in methanol to afford the mononuclear complexes [(η5-C5H5)Ru(PPh3)(bpp-H)]PF6 ([1]PF6), [(η5-C5H5)Os(PPh3)(bpp-H)]PF6 ([2]PF6) and [(η5-C5Me5)Ru(PPh3)(bpp-H)]PF6 ([3]PF6), respectively. The dinuclear η5-pentamethylcyclopentadienyl complexes [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2 as well as the dinuclear η6-arene ruthenium complexes [(η6-C6H6)Ru(μ-Cl)Cl]2 and [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2 react with 2 eq. of bpp-H in the presence of NH4PF6 or NH4BF4 to afford the corresponding mononuclear complexes [(η5-C5Me5)Rh(bpp-H)Cl]PF6 ([4]PF6), [(η5-C5Me5)Ir(bpp-H)Cl]PF6 ([5]PF6), [(η6-C6H6)Ru(bpp-H)Cl]BF4 ([6]BF4) and [(η6-p-iPrC6H4Me)Ru(bpp-H)Cl]BF4 ([7]BF4). However, in the presence of 1 eq. of bpp-H and NH4BF4 the reaction with the same η6-arene ruthenium complexes affords the dinuclear salts [(η6-C6H6)2Ru2(bpp)Cl2]BF4 ([8]BF4) and [(η6-p-iPrC6H4Me)2Ru2(bpp)Cl2]BF4 ([9]BF4), respectively. These compounds have been characterized by IR, NMR and mass spectrometry, as well as by elemental analysis. The molecular structures of [1]PF6, [5]PF6 and [8]BF4 have been established by single crystal X-ray diffraction studies and some representative complexes have been studied by UV–vis spectroscopy.  相似文献   

19.
Treatment of either RuHCl(CO)(PPh3)3 or MPhCl(CO)(PPh3)2 with HSiMeCl2 produces the five-coordinate dichloro(methyl)silyl complexes, M(SiMeCl2)Cl(CO)(PPh3)2 (1a, M = Ru; 1b, M = Os). 1a and 1b react readily with hydroxide ions and with ethanol to give M(SiMe[OH]2)Cl(CO)(PPh3)2 (2a, M = Ru; 2b, M = Os) and M(SiMe[OEt]2)Cl(CO)(PPh3)2 (3a, M = Ru; 3b, M = Os), respectively. 3b adds CO to form the six-coordinate complex, Os(SiMe[OEt]2)Cl(CO)2(PPh3)2 (4b) and crystal structure determinations of 3b and 4b reveal very different Os-Si distances in the five-coordinate complex (2.3196(11) Å) and in the six-coordinate complex (2.4901(8) Å). Reaction between 1a and 1b and 8-aminoquinoline results in displacement of a triphenylphosphine ligand and formation of the six-coordinate chelate complexes M(SiMeCl2)Cl(CO)(PPh3)(κ2(N,N)-NC9H6NH2-8) (5a, M = Ru; 5b, M = Os), respectively. Crystal structure determination of 5a reveals that the amino function of the chelating 8-aminoquinoline ligand is located adjacent to the reactive Si-Cl bonds of the dichloro(methyl)silyl ligand but no reaction between these functions is observed. However, 5a and 5b react readily with ethanol to give ultimately M(SiMe[OEt]2)Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6a, M = Ru; 6b, M = Os). In the case of ruthenium only, the intermediate ethanolysis product Ru(SiMeCl[OEt])Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6c) was also isolated. The crystal structure of 6c was determined. Reaction between 1b and excess 2-aminopyridine results in condensation between the Si-Cl bonds and the N-H bonds with formation of a novel tridentate “NSiN” ligand in the complex Os(κ3(Si,N,N)-SiMe[NH(2-C5H4N)]2)Cl(CO)(PPh3) (7b). Crystal structure determination of 7b shows that the “NSiN” ligand coordinates to osmium with a “facial” arrangement and with chloride trans to the silyl ligand.  相似文献   

20.
Reaction of 2-(2′,6′-diethylphenylazo)-4-methylphenol (L2) with [Ir(PPh3)3Cl] afforded two organoiridium complexes 3 and 4 via C-H bond activation of an ethyl group in the arylazo fragment of the L2 ligand. In both the complexes the azo ligand binds to iridium as a dianionic tridentate C,N,O-donor. Two triphenylphosphines and a hydride (in the case of complex 3) or chloride (in the case of complex 4) are also coordinated to the metal center. A similar reaction of [Ir(PPh3)3Cl] with 2-(2′,6′-diisopropylphenylazo)-4-methylphenol (L3) yielded another organoiridium complex 5, where migration of one iso-propyl group from its original location (say, the 2′ position) to the corresponding third position (say, the 4′ position) took place through C-C bond activation. In this complex the modified azo ligand binds to iridium as a dianionic tridentate C,N,O-donor. Two triphenylphosphines and a hydride are also coordinated to the metal center. The structures of complexes 3 and 4 have been optimized through DFT calculations. The structure of complex 5 has been determined by X-ray crystallography. All the complexes show characteristic 1H NMR signals and intense transitions in the visible region. Cyclic voltammetry on all the complexes shows an oxidation within 0.66-1.10 V vs SCE, followed by a second oxidation within 1.15-1.33 V vs SCE and a reduction within −0.96 to −1.07 V vs SCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号