首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutral η1-benzylnickel carbene complexes, [Ni(η1-CH2C6H5)(IiPr)(PMe3)(Cl)] (3) (IiPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene) and [Ni(η1-CH2C6H5)(SIiPr)(PMe3)(Cl)] (4) (SIiPr = 1,3-bis-(2,6-diisopropylphenyl)imidazolin-2-ylidene), were prepared by the reaction between [Ni(η3-CH2C6H5)(PMe3)(Cl)] and an equivalent amount of the corresponding free N-heterocyclic carbene. The preparation of η3-benzylnickel carbene complexes, [Ni(η3-CH2C6H5)(IiPr)(Cl)] (5) and [Ni(η3-CH2C6H5)(SIiPr)(Cl)] (6) were carried out by the abstraction of PMe3 from 3 and 4 by the treatment of B(C6F5)3. The treatment of AgX on 5 and 6 produced the anion-exchanged complexes, [Ni(η3-CH2C6H5)(NHC)(X)] (7, NHC = IiPr, X = O2CCF3; 8, NHC = IiPr, X = O3SCF3; 9, NHC = SIiPr, X = O2CCF3; 10, NHC = SIiPr, X = O3SCF3). The solid state structures of 3 and 10 were determined by X-ray crystallography. The η3-benzyl complexes of IiPr (5, 7, and 8) alone, in the absence of any activators such as borate and MAO, showed good catalytic activity towards the vinyl-type norbornene polymerization. The catalyst was thermally robust and the activity increases as the temperature rises to 130 °C.  相似文献   

2.
The oligoether-linked bis-benzimidazolium salt 1,1′-[1,2-ethanediylbis(oxy-1,2-ethanediyl)]bis[(3-secbutyl)benzimidazolium-1-yl]iodide (H2L1 · I2), 1,1′-[1,2-ethanediylbis(oxy-1,2-ethanediyl)]bis[(3-ethyl)benzimidazolium-1-yl]iodide (H2L2 · I2) and 1,1′-[1,2-ethanediylbis(oxy-1,2-ethanediyl)]bis[(3-secbutyl)benzimidazolium-1-yl]hexafluorophosphate (H2L1 · (PF6)2) and their three new mercury(II) and silver(I) complexes containing NHC metallacrown ethers, HgL1 · (Hg2 · I6) (1), HgL2 · I2 (2) and AgL1 · PF6 (3) were prepared and characterized. In the packing diagrams of H2L2 · I2, 1, 2 and 3 benzimidazole ring head-to-tail π-π stacking interactions are observed.  相似文献   

3.
The reaction between BaI2 · 2H2O and NaHFIP [HFIP = OCH(CF3)2] in a 1:1 stoichiometry gave the heterometallic compound NaBaI2(HFIP)(H2O)(THF)0.5 (1). Attempts to recrystallize 1 in the presence of N- or O-donor ligands lead to redistribution reactions. Barium iodide adducts such as BaI2(DME)3 (2), trans-BaI2(DME)(triglyme) (3) and cis-BaI2(DME)(tetraglyme) (4) were isolated with DME as solvent. A similar behavior was observed for the reaction between BaI2 · 2H2O and NaTFA (TFA = O2CCF3) in a 1:1 stoichiometry in THF, and [Ba(tetraglyme)2]I2 · C7H8 (6) was isolated in the presence of excess tetraglyme. All compounds have been characterized by elemental analysis, IR and 1H NMR as well as single crystal X-ray studies for 3, 4 and 6. Compounds 3 and 4 are covalent adducts with eight- and nine-coordinate barium, respectively. Compound 6 is an ionic compound where two tetraglyme ligands wrap the 10-coordinate barium cation in a helical fashion. The presence of DME actually allows the coordination number of barium in the mixed-ligand adducts 3 and 4 to be tuned. The average Ba–O bond lengths (2.80 for 3 to 2.87 Å for 6) reflect the coordination number of the metal. The same observation is valid for the average Ba–I bond distance, 3.442 for 3 vs. 3.536 Å for 4.  相似文献   

4.
For N-(thio)phosphorylthioureas of the common formula RC(S)NHP(X)(OiPr)2HLI (R = N-(4′-aminobenzo-15-crown-5), X = S), HLII (R = N-(4′-aminobenzo-15-crown-5), X = O), HLIII (R = PhNH, X = S), HLIV (R = PhNH, X = O), and (N,N′-bis-[C(S)NHP(S)(OiPr)2]2-1,10-diaza-18-crown-6) H2LV, salts LiLI,III,IV, NaLIIV, KLIIVM2LV (M = Li+, Na+, K+), Ba(LI,III,IV)2, and BaLV have been synthesized and investigated. Compounds NaLI,II quantitatively drop out as a deposit in ethanol medium, allowing the separation of Na+ and K+ cations. This effect is not displayed for the other compounds. The crystal structures of HLIII and the solvate of the composition [K(Me2CO)LIII] have been investigated by X-ray crystallography.  相似文献   

5.
Twelve new organotin complexes with 4-sulfanylbenzoic acid of two types: RnSn[S(C6H4COOH)]4−n (I) (n = 3: R = Me 1, n-Bu 2, Ph 3; PhCH24; n = 2: R = Me 5; n-Bu 6, Ph 7, PhCH28) and R3Sn(SC6H4COO)SnR3 · mEtOH (II) (m = 0: R = Me 9, n-Bu 10, PhCH212; m = 2: R = Ph 11), along with the 4,4′-bipy adduct of 9, [Me3Sn(SC6H4COO)SnMe3]2(4,4-bipy) 13, have been synthesized. The coordination behavior of 4-sulfanylbenzoic acid is monodentate in 1-8 by thiol S atom but not carboxylic oxygen atom. While, in 9-13 it behaves as multidenate by both thiol S atom and carboxylic oxygen atoms. The supramolecular structures of 6, 11 and 13 have been found to consist of 1D molecular chains built up by intermolecular O-H?O, C-H?O or C-H?S hydrogen bonds. The supramolecular aggregation of 7 is 2D network determined by two C-H?O hydrogen bonds. Extended intermolecular C-H?O interactions in the crystal lattice of 9 link the molecules into a 2D network.  相似文献   

6.
Two neutral ligands, L1 · 2H2O and L2 · H2O, and seven complexes, [Cu(pmb)2(L1)] (1), [Cu(pmb)2(L2)] (2), [Cu(Ac)2(L2)] · 4H2O (3), [Cu(4-aba)2(L2)] (4), [Ag(4-ts)(L1)(H2O)] (5), [Ag2(epes)2(L1)] · 2H2O (6), [Ag(1,5-nds)0.5(L2)] · 0.5C2H5OH · H2O (7) [where L1 = 1,1′-(1,4-butanediyl)bis(2-methylbenzimidazole); L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole), pmb = p-methoxybenzoate anion; Ac = acetate anion; 4-aba = 4-aminobenzoate anion; 4-ts = p-toluenesulfonate anion; epes = N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonate) anion; 1,5-nds = 1,5-naphthalenedisulfonate anion], have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The L1 and L2 ligands in compounds 17 act as bridging ligands, linking metal ions into chain structures. The chains in compounds 3, 4 and 6 interlace with each other by hydrogen bonds to generate 3D supramolecular structures. In compound 5, π–π interactions between adjacent L1 ligands hold the chains to a supramolecular layer. In compound 7, the sulfonate anions act as counterions in the framework. The thermal stabilities of 3, 6 and 7, and the luminescent properties for 57 in the solid states are also discussed.  相似文献   

7.
A series of organotin (IV) complexes with 6-amino-1,3,5-triazine-2,4-dithiol of the type [(RnSnCl4−n)2 (C3H2N4S2)] (n = 3: R = Me 1, n-Bu 2, PhCH23, Ph 4; n = 2: R = Me 5, n-Bu 6, PhCH27, Ph 8) have been synthesized. All the complexes 1-8 have been characterized by elemental analysis, IR, 1H and 13C NMR spectra. Among them complexes 1, 4, 5 and 8 have also been characterized by X-ray crystallography diffraction analyses, which revealed that the tin atoms of complexes 1, 4, 5 and 8 are all five-coordinated with distorted trigonal bipyramid geometries.  相似文献   

8.
The reaction of acetonitrile (15) and mixed acetonitrile/water 1:1 (69) solutions containing the cyanide-bearing [Fe(bipy)(CN)4] building block (bipy = 2,2′-bipyridine) and the partially blocked [Ln(bpym)]3+ cation (Ln = lanthanide trivalent cation and bpym = 2,2′-bipyrimidine) has afforded two new families of 3d–4f supramolecular assemblies of formula [Ln(bpym)(NO3)2(H2O)3][Fe(bipy)(CN)4] · H2O · CH3CN [Ln = Sm (1), Gd (2), Tb (3), Dy (4) and Ho (5)] and [Ln(bpym)(NO3)2(H2O)4][Fe(bipy)(CN)4] [Ln = Pr (6), Nd (7), Sm (8), Gd (9)]. They crystallize in the P21/c (15) and P2/c (69) space groups and their structures are made up of [Fe(bipy)(CN)4] anions (19) and [Ln(bpym)(NO3)2(H2O)n]+ cations [n = 3 (15) and 4 (69)] with uncoordinated water and acetonitrile molecules (15) which are interlinked through an extensive network of hydrogen bonds and π–π stacking into three-dimensional motifs. Both families have in common the occurrence of the low-spin iron(III) unit [Fe(bipy)(CN)4] where two bipy–nitrogen and four cyanide–carbon atoms build a somewhat distorted octahedral surrounding around the iron atom [Fe–N = 1.980(3)–1.988(3) Å (15) and 1.988(2)–1.992(2) Å (69); Fe–C = 1.904(5)–1.952(4) Å (15) and 1.911(2)–1.948(3) Å (69)]. The main structural difference between both families concerns the environment of the lanthanide atom which is nine- (15)/10-coordinated (69) with a chelating bpym, two bidentate nitrate and three (15)/four (69) water molecules building distorted monocapped (15)/bicapped (69) square antiprisms. This different lanthanide environment is at the origin of the different hydrogen bonding pattern of the two families of compounds.  相似文献   

9.
Treatment of parent compounds [(μ-SCH2)2X]Fe2(CO)6 (A, X = O; B, X = NBu-t; C, X = NC6H4OMe-p) with N-heterocyclic carbene IMes (IMes = 1,3-bis(mesityl)imidazol-2-ylidene) generated in situ through reaction of imidazolium salt IMes ·HCl with n-BuLi or t-BuOK afforded the monocarbene-substituted complexes [(μ-SCH2)2X]Fe2(CO)5(IMes) (1, X = O; 2, X = NBu-t; 3, X = NC6H4OMe-p). Similarly, the monocarbene and dicarbene-substituted complexes [(μ-SCH2)2NBu-t]Fe2(CO)5[IMes(CH2)3IMes]·HBr (4) and [(μ-SCH2)2CH2Fe2(CO)5]2[μ-IMes(CH2)3IMes] (5, IMes = 1-(mesityl)imidazol-2-ylidene) could be prepared by reactions of parent compound B with the mono-NHC ligand-containing imidazolium salt [IMes(CH2)3IMes] · HBr and parent compound [(μ-SCH2)2CH2]Fe2(CO)6 (D) with di-NHC ligand IMes(CH2)3IMes (both NHC ligands were generated in situ from reaction of n-BuLi with imidazolium salt [IMesIMes(CH2)3IMes] · 2HBr), respectively. The imidazolium salt [IMes(CH2)3IMes] · 2HBr was prepared by reaction of 1-(mesityl)imidazole with Br(CH2)3Br. All the new model compounds 1-5 and imidazolium salt [IMes(CH2)3IMes] · 2HBr were fully characterized by elemental analysis, spectroscopy, and X-ray crystallography. On the basis of electrochemical studies of 1 and 2, compound 2 was found to be a catalyst for proton reduction to hydrogen. In addition, an EECC mechanism for this electrocatalytic reaction is preliminarily suggested.  相似文献   

10.
Three complexes of magnesium phthalocyaninato(2−) derivatives in the crystalline form, MgPc(H2O)·(C2H5)3N – (I), MgPc(H2O)2·2(C2H5)3N – (II) and MgPc(H2O)2 – (III), depending on the thermal recrystallisation conditions were obtained and structurally characterised. In complex I, the Mg center exhibits square-pyramidal (4 + 1) coordination environment, whereas in II and III the Mg center of MgPc the biaxial (4 + 2) coordination. Owing to the interaction of the positively charged Mg center with oppositely charged oxygen atom of water molecule in an axial position in I, the Mg atom is significantly displaced (0.451(2) Å) from the plane defined by four isoindole N atoms and leads to distortion of the planar Pc(2−) macrocycle to the saucer-shape form. In II and III due to the biaxial (4 + 2) coordination of the Mg center of MgPc, the Mg atom lies on a N4-isoindole plane. The triethylamine solvent molecules in I and II interact with mono or bis(aqua)magnesium phthalocyanine via   O–H??N hydrogen bonds. The axial Mg–O bond in I is significantly shorter than that in the II and III complexes. The strength of the Mg–O bond in these complexes is correlated with their thermal stability. From among the complexes only complex I exhibits an intense near-IR absorption band in the solid-state. The spectra of I, II and III in solution are very similar.  相似文献   

11.
A series of square-pyramidal copper(II) complexes, [Cu(LSe)(NN)] (H2LSe = seleno-bisphenolate; NN = bipyridyl, phenanthroline or N,N-dimethylethylenediamine) have been synthesized and characterized by elemental analyses, magnetic measurements, IR, EPR, and electronic spectral studies. Single crystal X-ray structures of [Cu(LSe)(bpy)]·H2O (2), [Cu(LSe)(phen)]·CH2Cl2 (3) and [Cu(LSe)(N,N-Me2en)] (4) showed that all the complexes have approximately square-pyramidal geometry. In complexes 2 and 3, the square plane is occupied by O(1), O(2), N(1) and N(2) and the apical position by Se atom of LSe 2− ligand. The asymmetric unit of complex 4 contains two crystallographically independent discrete molecules A and B with CuN2OSe chromophore comprising the square plane and the axial position being occupied by another phenolate oxygen atom. Complexes 2, 3 and 4 are found to be paramagnetic and EPR parameters extracted are: g = 2.232, g = 2.069; 〈geff〉 = 1.95; and g = 2.232, g = 2.083 for complexes 2, 3 and 4, respectively. Both the complexes 2 and 4 show three reduction processes: (a) a quasi-reversible reduction of CuII to CuI, (b) an irreversible reduction of CuI to Cu0 with the release of free ligand, and (c) a reduction process occurs at this coordinated ligand. They also show a well-defined quasi-reversible oxidation of CuII to CuIII and an irreversible oxidation peak at ∼1.30 and 1.40 V vs. Ag/AgCl for 4 and 2, respectively, with no cathodic counterpart, and were attributed to the oxidation of the metal coordinated ligand.  相似文献   

12.
The reactions of Cu(ClO4)2·6H2O with 6-(benzylamino)purine derivatives in a stoichiometric 1:2 metal-to-ligand ratio led to the formation of penta-coordinated dinuclear complexes of the formula [Cu2(μ-L18)4(ClO4)2](ClO4)2·nsolv, where L1 = 6-(2-fluorobenzylamino)purine (complex 1), L2 = 6-(3-fluorobenzylamino)purine (2), L3 = 6-(4-fluorobenzylamino)purine (3), L4 = 6-(2-chlorobenzylamino)purine (4), L5 = 6-(3-chlorobenzylamino)purine (5), L6 = 6-(4-chlorobenzylamino)purine (6), L7 = 6-(3-methoxybenzylamino)purine (7) and L8 = 6-(4-methoxybenzylamino)purine (8); n = 0–4 and solv = H2O, EtOH or MeOH. All the complexes have been fully characterized by elemental analysis, FTIR, UV–Vis and EPR spectroscopy, and by magnetic and conductivity measurements. Variable temperature (80–300 K) magnetic susceptibility data of 18 showed the presence of a strong antiferromagnetic exchange interaction between two Cu(II) (S = 1/2) atoms with J ranging from −150.0(1) to −160.3(2) cm−1. The compound 6·4EtOH·H2O was structurally characterized by single crystal X-ray analysis. The Cu?Cu separation has been found to be 2.9092(8) Å. The antiradical activity of the prepared compounds was tested by in vitro SOD-mimic assay with IC50 in the range 8.67–41.45 μM. The results of an in vivo antidiabetic activity assay were inconclusive and the glycaemia in pre-treated animals did not differ significantly from the positive control.  相似文献   

13.
The organotin(IV) complexes R2Sn(tpu)2 · L [L = 2MeOH, R = Me (1); L = 0: R = n-Bu (2), Ph (3), PhCH2 (4)], R3Sn(Hthpu) [R = Me (5), n-Bu (6), Ph (7), PhCH2 (8)] and (R2SnCl)2 (dtpu) · L [L = H2O, R = Me (9); L = 0: R = n-Bu (10), Ph (11), PhCH2 (12)] have been synthesized, where tpu, Hthpu and dtpu are the anions of 6-thiopurine (Htpu), 2-thio-6-hydroxypurine (H2thpu) and 2,6-dithiopurine (H2dtpu), respectively. All the complexes 1-12 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. And complexes 1, 2, 7 and 9 have also been determined by X-ray crystallography, complexes 1 and 2 are both six-coordinated with R2Sn coordinated to the thiol/thione S and heterocyclic N atoms but the coordination modes differed. As for complex 7 and 9, the geometries of Sn atoms are distorted trigonal bipyramidal. Moreover, the packing of complexes 1, 2, 7 and 9 are stabilized by the hydrogen bonding and weak interactions.  相似文献   

14.
Nine new compounds, namely [CuL1(biim-6)] · H2O (1), [ZnL1(biim-6)] · H2O (2), [MnL1(biim-6)] · H2O (3), [MnL1(biim-4)] (4), [Co2(L2)2(biim-5)3 · 6H2O] · 8H2O (5), [ZnL3(biim-6)] (6), [ZnL3(biim-5)] (7), [CdL3(biim-5) · 1.5H2O] · 0.5H2O (8) and [CdL4(biim-6) · 2H2O] (9) [where L1 = oxalate anion, L2 = fumarate anion, L3 = phthalate anion, L4 = p-phthalate anion, biim-4 = 1,1′-(1,4-butanediyl)bis(imidazole), biim-5 = 1,1′-(1,5-pentanedidyl)bis(imidazole) and biim-6 = 1,1′-(1,6-hexanedidyl)bis(imidazole)] were successfully synthesized. Compounds 13 are isostructural, and display 2D polymeric structures. Compound 4 shows a threefold interpenetrating diamondoid framework. In compound 5, the anions act as counterions, and the metal cations are bridged by bis(imidazole) ligands to form 1D polymeric chains. Compounds 69 show 2D polymeric structures. The magnetic properties for 1, 3 and 4 and luminescent properties for 2 and 69 are discussed. Thermogravimetric analyses (TGA) for these compounds are also discussed.  相似文献   

15.
A series of chiral organotin halides containing 2-(4-R)-oxazolinyl-o-carboranes (R = i-propyl 1, t-butyl 2; CabOxa) was prepared from o-carborane with a chiral oxazoline auxiliary. X-ray structural analysis of the representative chiral organotin halide, [2-(4-i-propyl)-oxazolinyl-o-carboranyl]SnMe2Br (4), revealed the formation of a stable penta-coordinated tin center due to a N → Sn interaction. Similar O → Sn assisted intramolecular penta-coordinated tin complexes (9 and 10) were prepared from methoxy-o-carborane ligands, MeOCH(Z)-o-carborane (Z = H 7, Ph 8; CabOMe), respectively, and a rigid o-carboranyl backbone provided the basic skeleton for the facile formation of organotin complexes.  相似文献   

16.
A series of new hydroxyindanimine ligands [ArNCC2H3(CH3)C6H2(R)OH] (Ar = 2,6-i-Pr2C6H3, R = H (HL1), R = Cl (HL2), and R = Me (HL3)) were synthesized and characterized. Reaction of hydroxyindanimine with Cu(OAc)2 · H2O results in the formation of the mononuclear bis(hydroxyindaniminato)copper(II) complexes Cu[ArNCC2H3(CH3)C6H2(R)O]2 (Ar = 2,6-i-Pr2C6H3, R = H (1), R = Cl (2), and R = Me (3)). The complex 2′ was obtained from the chlorobenzene solution of the complex 2, which has the same molecule formula with the complex 2 but it is a polymorph. All copper(II) complexes were characterized by their IR and elemental analyses. In addition, X-ray structure analyses were performed for complexes 1, 2, and 2′. After being activated with methylaluminoxane (MAO), complexes 1-3 can be used as catalysts for the vinyl polymerization of norbornene with moderate catalytic activities. Catalytic activities and the molecular weight of polynorbornene have been investigated for various reaction conditions.  相似文献   

17.
Reaction of (CH3C5H4)2LnCl(THF) with NaNHAr in a 1:1 molar ratio in THF afforded the amide complexes (CH3C5H4)2LnNHAr(THF) [(Ar = 2,6-Me2C6H3, Ln = Yb (I), Y (III); Ar = 2,6-iPr2C6H3, Ln = Yb (II)]. X-ray crystal structure determination revealed that complexes I-III are isostructural. The central metal in each complex coordinated to two methylcyclopentadienyl groups, one amide group and one oxygen atom from THF to form a distorted tetrahedron. Complexes I-III and a known complex (CH3C5H4)2YbNiPr2(THF) IV all can serve as the catalysts for addition of amines to nitriles to monosubstituted N-arylamidines. The activity depended on the central metals and amide groups, and the active sequence follows the trend IV ≈ III < I < II.  相似文献   

18.
Four cyclometalated Pt(II) complexes, i.e., [(L2)PtCl] (1b), [(L3)PtCl] (1c), [(L2)PtCCC6H5] (2b) and [(L3)PtCCC6H5] (2c) (HL2 = 4-[p-(N-butyl-N-phenyl)anilino]-6-phenyl-2,2′-bipyridine and HL3 = 4-[p-(N,N′-dibutyl-N′-phenyl)phenylene-diamino]-phenyl-6-phenyl-2,2′-bipyridine), have been synthesized and verified by 1H NMR, 13C NMR and X-ray crystallography. Unlike previously reported complexes [(L1)PtCl] (1a) and [(L1)PtCCC6H5] (2a) (HL1 = 4,6-diphenyl-2,2′-bipyridine), intense and continuous absorption bands in the region of 300-500 nm with strong metal-to-ligand charge transfer (1MLCT) (dπ(Pt) → π(L)) transitions (ε ∼ 2 × 104 dm3 mol−1 cm−1) at 449-467 nm were observed in the UV-Vis absorption spectra of complexes 1b, 1c, 2b and 2c. Meanwhile, with the introduction of electron-donating arylamino groups in the ligands of 1a and 2a, complexes 1b and 2b display stronger phosphorescence in CH2Cl2 solutions at room temperature with bathochromically shifted emission maxima at 595 and 600 nm, relatively higher quantum yields of 0.11 and 0.26, and much longer lifetimes of 8.4 and 4.5 μs, respectively. An electrochromic film of 1b-based polymer was obtained on Pt or ITO electrode surface, which suggests an efficient oxidative polymerization behavior. An orange multilayer organic light-emitting diode with 1b as phosphorescent dopant was fabricated, achieving a maximum current efficiency of 11.3 cd A−1 and a maximum external efficiency of 5.7%. The luminescent properties of complexes 1c and 2c are dependent on pH value and solvent polarity, which is attributed to the protonation of arylamino units in the C^N^N cyclometalating ligands.  相似文献   

19.
Mononuclear complexes of cyclodiphosphazane with an uncoordinated phosphorus centre [RuCl26-cymene){l-κP}] (1a) (L = cis-{(o-MeOC6H4O)P(μ-NtBu)}2) and [PdCl2(PEt3){l-κP}] (1b) react with 1 equiv. of [AuCl(SMe2)] to afford RuII/AuI and PdII/AuI heterodinuclear complexes [RuCl26-cymene){μ-l-κP,κP}AuCl] (2) and [PdCl2(PEt3){μ-l-κP,κP}AuCl] (3), respectively. Heterotrinuclear complexes [PdCl2{μ-l-κP,κP}2(AuCl)2] (4), [PtCl2{μ-l-κP,κP}2(AuCl)2] (5) and [CuI{μ-l-κP,κP}2(AuCl)2] (6) containing PdII/2AuI, PtII/2AuI and CuI/2AuI metal centers have been synthesized from the reactions of trans-[PdCl2{l-κP}2] (1c), cis-[PtCl2{l-κP}2] (1d) and [CuI{{l-κP}2] (1f) respectively, with 2 equiv. of [AuCl(SMe2)]. Molecular structures of complexes 2, 3 and 4 were established by single crystal X-ray diffraction studies.  相似文献   

20.
New boron substituted cobalta bis(dicarbollide)(1-) ion (1) derivatives of formula [(8,8′-(RPhP(O)(CH2)nC(O)N) < (1,2-C2B9H10)2-3,3′-Co] (R = Ph or C8H17, n = 1, 3a, 3b; R = Ph, n = 2, 3c), [(8-(Ph2P(O)CH2C(O)NR)(1,2-C2B9H10))(1′,2′-C2B9H11)-3,3′-Co] (R = H, C2H5, CH2C6H5, 5a-c) and [(8-(2RPhP(O)CH2C(O)N(1R)CH2-1,2-C2B9H10))(8′-CH3O-1′,2′-C2B9H10)-3,3′-Co] (1R = Benzyl, 2R = Ph or C8H17, 7a,b) were prepared with the aim to develop a new class of efficient extraction agents for partitioning of polyvalent f-block elements, i.e. lanthanides and actinides from high-level activity nuclear waste. The anionic ligands were characterized by multinuclear NMR spectroscopy and MS, the structures of Cs3a and the calcium complex of 7a were determined by X-ray diffraction analysis. The crystallographic study of the Cs3a proved a formation of linear chains in the structure, where the metal cation is coordinated by oxygen atoms of the CMPO terminal groups. The X-ray structure of the Ca2+ complex of the ionic ligand 7a proved a 1:3 metal to ligand ratio. Presented also is the X-ray structure of the starting ammonium compound 6 used in the synthesis of 7a and 7b. With exception of 5c, these anionic ligands are of high extraction efficiency, the highest being found for 7a in low polar solvent mixture hexyl methyl ketone-dodecane 1:1. These properties qualify some of these derivatives for possible technological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号