共查询到18条相似文献,搜索用时 62 毫秒
1.
针对无线传感器网络中传感器节点随机分布造成能耗不均和“热区”等问题,提出了一种改进的基于蚁群算法的非均匀分簇路由协议。该协议也采用“轮”方式运行,每轮簇首选举开始阶段,根据节点剩余能量、节点密度,结合节点到Sink节点的距离来构造不均匀的竞选半径,每个节点根据竞选半径范围内邻居节点计算剩余能量比及距离偏差平均值,从而计算出其簇首竞争等待时间,采用时间等候簇首竞选机制来选举出簇首,平衡簇内的通信能耗;数据传输阶段,考虑剩余能量、通信能耗、链路质量、传输时延等因素,采用改进的蚁群算法构造最优传输路径,数据传输的同时更新信息素,从而达到自适应、动态优化地建立和维护传输路径。仿真结果表明,该路由协议能有效节约能量和均衡能耗,延长网络生命周期,改善链路质量,减少传输时延。 相似文献
2.
JP+1]研究了无线传感器网络,提出了一种适合大规模应用的无线传感器网络体系结构,并提出了一种新的路由协议——多级异构分簇路由协议;该协议将无线传感器网络节点分成4种类型,根据簇头间平均跳数、簇头能耗等因素选举出第一级簇头节点;利用通信能耗、节点能耗以及跳数3个方面作为启发因子,寻找第一级簇头到第二级簇头间的最佳路径;基于NS2平台对该路由协议进行了仿真实验,并与LEACH协议进行比较;仿真结果表明:在大规模的应用中,该路由协议能有效地降低节点的平均能耗、延长网络生存时间。 相似文献
3.
为加快无线传感器网络最优路径搜索速度、减少路径寻优能量消耗和延长网络寿命,提出了基于改进的DIJKSTRA算法的无线传感器网络分簇路由算法;运用DIJKSTRA算法在无线传感器网络内以多跳接力的方式来搜寻从源节点到目的节点的最短路径;结合能耗优化策略,避免网络能耗热点问题,实现网络能耗均衡;通过与基于蚁群算法的路由算法对比分析,基于Dijkstra的网络分簇路由算法能优化网络分簇并建立较优传输路径,其快速收敛性能减缓了网络中簇头节点的能耗,延长了网络寿命,提高了网络鲁棒性。 相似文献
4.
目的:无线传感器网络发展迅速,但传感器的高能耗问题成为制约其发展的主要瓶颈,高效节能的路由协议设计成为研究热点。方法:针对目前无线传感器网络常用的LEACH路由协议存在的簇首能耗过分集中、簇首分布不均衡问题,提出了改进的路由协议EEACRA,在总结、分析LEACH路由协议现有问题的基础上,给出了EEACRA路由协议的簇首选取门限值、簇首位置调整算法和基于能量代价最小的簇间多跳路由算法的实现方法,同时给出了具体的实现EEACRA协议的工作流程和关键算法。在MATLAB环境下对LEACH路由协议和EEACRA路由协议进行了仿真,对比了不同能耗降低措施对网络能耗降低的贡献。结果:仿真结果表明EEACRA路由协议的网络稳定期较LEACH路由协议有较大的改善。结论:证明了改进的路由协议EEACRA可以有效地提高网络的稳定期。 相似文献
5.
无线传感器网络是一种资源受限的网络,特别是在供能方面,为提高网络生存时间,提出了一种基于网格的无线传感器网络动态分簇路由协议,虚拟网格可以根据局部的信息动态的调整簇的大小,达到节省能量的目的;采用唯一簇头选举法(unique clusterhead election method)产生簇头,确保每个虚拟网格内只有一个簇头,并在恰当的时候才更换簇头;仿真实验和分析表明,该协议有效地平衡了整个网络的能量消耗,并显著地延长了网络的生存时间。 相似文献
6.
7.
为了延长无线传感器网络(Wireless Sensor Network ,WSN)的生命周期,均衡各个节点间能量消耗,针对现有的WSN路由优化算法存在的问题,提出了一种基于改进蚁群算法的路由优化算法。首先通过对蚁群算法和遗传算法的优劣性比较,在蚁群算法的基础上,结合遗传算法的选择、交叉和变异的操作,从而提高蚁群算法的搜索速度和寻优能力。最优路径评价函数综合考虑节点能耗及节点的剩余能量,使剩余能量多的节点优先参与数据转发,均衡节点间的能量消耗。通过与经典蚁群算法及遗传算法的对比实验表明,随着数据转发轮数增加,改进的蚁群算法能耗小,剩余能量多,网络生命周期明显延长;随着整个网络运行时间的增长,改进的蚁群算法,节点均衡能耗性好,最优路径搜索的成功率也明显优于其他两种算法。 相似文献
8.
由于车辆的高速移动及拓扑动态变化,构建稳定的传输路径是车载自组织网络VANETs(Vehicular ad hoc Networks)应用的关键。而簇技术建立稳定传输路径的有效技术之一。为此,提出基于蚁群算法的簇路由ACCR(Ant Colony algorithm based cluster routing)协议。蚁群系统是典型的启发性算法,能够解决簇划分问题。据此,ACCR协议利用蚁群算法选择簇头,提高簇的稳定性和数据传输性能。仿真结果表明,与ACO-CR协议相比,提出的ACCR协议的簇头寿命提高了近20%,数据传输率提高了近45%。 相似文献
9.
由于无线传感器网络中的节点链路状况、数据传输能耗及节点剩余能量的限制,造成网络中部分感知节点寿命缩短,影响网络生存周期,提出了一种基于人工蜂群算法的WSNs能耗均衡算法,优化网络能耗均衡,从而提高网络寿命;文章给出了网络能耗相应的数学模型及优化求解算法,介绍人工蜂群算法的寻找食物过程,阐述了人工蜂群算法在网络能耗均衡方面的实现步骤;通过实验仿真证明,文章提到的算法与LEACH分簇算法、蚁群优化算法相比,具有更好的能耗和负载均衡能量、丢包率和时延性,有效地提高了网络生存周期。 相似文献
10.
11.
为了提高网络资源利用率延长网络生存时间,提出一种基于共轭梯度法改进人工萤火虫算法(CAGSO)的WSN覆盖优化方案;共扼梯度法是利用目标函数的梯度逐步产生共轭方向并将其作为搜索方向的方法,即利用已知点处的梯度构造一组共扼方向并沿这组共扼方向进行搜索,这种方法经有限次迭代必达极小点;首先建立以覆盖率、节点利用率和能量均匀为准则的覆盖优化数学模型,然后采用改进的CAGSO算法求解该模型,从而得出最优覆盖方案;仿真分析说明,相比基本人工萤火虫算法,改进的CAGSO算法优化的网络覆盖率可以达到94.11%,有效实现WSN覆盖优化。 相似文献
12.
WSN中的信息传递主要通过传感器来进行传递信号,针对无线传感中DV-Hop算法在节点定位上存在精度低的问题,本文首先提出建立双曲线二维模型用来确定锚节点与未知节点的距离关系,其次设定误差系数使得传感器节点之间的误差降低,最后采用斯蒂芬森迭代法(Steffensen)定位方法对传感器节点进一步进行定位修正。仿真实验表明本文算法的在远程控制的中定位精度提高,传感器之间能量消耗降低,具有一定的推广价值。 相似文献
13.
针对传统算法在解决无线传感器网络覆盖优化上存在的覆盖率较低和节点分布不够均匀的问题,提出了一种改进的蛙跳算法;为了同时达到增加算法的种群多样性和加快算法收敛速度的目的,改进蛙跳算法分别增加了个体高斯学习机制和根据粒子群思想改进的更新策略,让族内最差个体在自身附近进行局部搜索,若无效,则使族内最差个体同时向族内最优个体和全局最优个体学习;在性能评估实验中,对改进的蛙跳算法分别进行了标准函数测试和无线传感器网络覆盖优化测试;测试结果表明,在6个标准测试函数中,改进的蛙跳算法与其他算法相比在4个测试函数上的收敛精度有了明显提高;在无线传感器网络覆盖优化中,改进的蛙跳算法也能够使节点分布更加均匀,使网络覆盖率达到了85.6%。 相似文献
14.
Wireless sensor network deployment should be optimized to maximize network coverage. The D-S evidence theory is an effective means of information fusion that can handle not only uncertainty and inconsistency, but also ambiguity and instability. This work develops a node sensing probability model based on D-S evidence. When there are major evidence disputes, the priority factor is introduced to reassign the sensing probability, with the purpose of addressing the issue of the traditional D-S evidence theory aggregation rule not conforming to the actual scenario and producing an erroneous result. For optimizing node deployment, a virtual force-directed particle swarm optimization approach is proposed, and the optimization goal is to maximize network coverage. The approach employs the virtual force algorithm, whose virtual forces are fine-tuned by the sensing probability. The sensing probability is fused by D-S evidence to drive particle swarm evolution and accelerate convergence. The simulation results show that the virtual force-directed particle swarm optimization approach improves network coverage while taking less time. 相似文献
15.
Qing Feng Shu-Chuan Chu Jeng-Shyang Pan Jie Wu Tien-Szu Pan 《Entropy (Basel, Switzerland)》2022,24(7)
In wireless sensor networks (WSN), most sensor nodes are powered by batteries with limited power, meaning the quality of the network may deteriorate at any time. Therefore, to reduce the energy consumption of sensor nodes and extend the lifetime of the network, this study proposes a novel energy-efficient clustering mechanism of a routing protocol. First, a novel metaheuristic algorithm is proposed, based on differential equations of bamboo growth and the Gaussian mixture model, called the bamboo growth optimizer (BFGO). Second, based on the BFGO algorithm, a clustering mechanism of a routing protocol (BFGO-C) is proposed, in which the encoding method and fitness function are redesigned. It can maximize the energy efficiency and minimize the transmission distance. In addition, heterogeneous nodes are added to the WSN to distinguish tasks among nodes and extend the lifetime of the network. Finally, this paper compares the proposed BFGO-C with three classic clustering protocols. The results show that the protocol based on the BFGO-C can be successfully applied to the clustering routing protocol and can effectively reduce energy consumption and enhance network performance. 相似文献
16.
针对无线传感器网络随机播撒的节点严重冗余并且导致网络寿命短、覆盖效率不高等缺陷,提出了一种混沌人工蜂群算法的无线传感器网络覆盖优化算法;将节点的利用率和覆盖率作为优化目标函数,建立与之对应的数学模型,之后用混沌人工蜂群算法改善人工蜂群算法陷入局部最优、收敛慢等问题,提高算法收敛速度和精度,对节点覆盖模型进行求解,得出网络最优覆盖方案;通过实验仿真,提出的算法提高了无线传感器网络的覆盖率,覆盖率可达93.48%以上,减少了网络节点冗余,提高了网络寿命,降低了网络成本。 相似文献
17.
Compressed sensing theory has been widely used for data aggregation in WSNs due to its capability of containing much information but with light load of transmission. However, there still exist some issues yet to be solved. For instance, the measurement matrix is complex to construct, and it is difficult to implement in hardware and not suitable for WSNs with limited node energy. To solve this problem, a random measurement matrix construction method based on Time Division Multiple Access (TDMA) is proposed based on the sparse random measurement matrix combined with the data transmission method of the TDMA of nodes in the cluster. The reconstruction performance of the number of non-zero elements per column in this matrix construction method for different signals was compared and analyzed through extensive experiments. It is demonstrated that the proposed matrix can not only accurately reconstruct the original signal, but also reduce the construction complexity from to (), on the premise of achieving the same reconstruction effect as that of the sparse random measurement matrix. Moreover, the matrix construction method is further optimized by utilizing the correlation theory of nested matrices. A TDMA-based semi-random and semi-deterministic measurement matrix construction method is also proposed, which significantly reduces the construction complexity of the measurement matrix from to , and improves the construction efficiency of the measurement matrix. The findings in this work allow more flexible and efficient compressed sensing for data aggregation in WSNs. 相似文献
18.
无线传感器网络的数据通信模式问题是目前的研究热点,针对现有的无线传感器网络数据汇集算法延时较大这一不足,对最小延时数据汇集树和传输调度问题进行了研究。提出一种基于度约束的汇集树构建算法(DCAT)。该算法按照 BFS 方式遍历图,当遍历到每个节点时,通过确定哪些节点与汇点更近来确定潜在母节点集合。然后,选择图中度数最小的潜在母节点作为当前被遍历节点的母节点。此外,为了在给定的汇集树上进行高效地数据汇集,还提出两种新的基于贪婪的TDMA传输调度算法:WIRES-G 和 DCAT-Greedy。利用随机生成的不同规模的传感器网络,参照当前最新算法,对文中方法的性能进行了全面评估。结果表明,与当前最优算法相比,文中调度算法与文中汇集树构建算法结合起来,可显著降低数据汇集的延时。 相似文献