共查询到19条相似文献,搜索用时 156 毫秒
1.
针对活性污泥法在污水处理过程中,水量会发生巨大的变化,以及运行所带来的强耦合、非线性、大滞后性等影响了污水处理的控制过程;利用神经网络技术特点对污水处理厂进行模拟实验,建立BP神经网络模型的仿真,用试凑法确定隐含层节点的个数,为了避免建立的网络过大,在训练网络过程中,避免出现网络“过训练”,建立合适的网络模型;通过对污水处理过程中输入数据的水质的变量参数,来预测未来某一时间输出某一水质变量参数;结果表明,BP神经网络可以应用于活性污泥法水处理过程中对水质参数进行模拟仿真和预测的效果。 相似文献
2.
主成分分析与遗传神经网络在制冷系统故障诊断中的应用 总被引:1,自引:0,他引:1
针对低温试验系统制冷设备测点多、数据间存在强相关性等特点,将主成分分析法和遗传神经网络智能识别方法进行组合,引入制冷系统的故障诊断中;结合专家经验和主成分分析客观地对多传感器信息进行了科学合理的故障特征优选,从而确定了神经网络的输入空间;为了克服神经网络易陷入局部最小的缺陷,利用遗传算法的全局搜索能力,对神经网络的初始权值和阈值进行了优化;运用该方法对制冷系统各故障状态进行识别,结果表明,简洁有效的网络结构不仅缩短了训练时间,而且提高了网络的稳定性和分类精度,为监测系统提供了一种有效的故障诊断方法。 相似文献
3.
利用群智能算法优化支持向量机(SVM)参数往往需要引入额外的变量,使变压器故障诊断问题更加复杂,对此提出一种自适应的模拟退火算法优化(ASA)支持向量机参数。通过设计自适应的冷却进度表,使得寻参的过程仅仅依赖于退火速率以及网格搜索粒度,保持了较少的参数设置。在相关数据集上的实验表明,与已提出的粒子群算法(PSO)、遗传算法(GA)相比,ASA算法具有更快的收敛速度以及较好的诊断精度。利用自适应的模拟退火算法能够较好的优化SVM参数并提高变压器故障诊断的精度。 相似文献
4.
为了有效地利用卫星下传的海量遥测数据,在测试过程中对卫星进行实时的故障诊断,提出了一种基于BP神经网络的卫星故障诊断方法;该方法包括离线自主学习和实时在线故障诊断两部分;离线自主学习部分基于历史数据库和更新样本进行自主学习,学习获得神经网络模型存储于知识库;实时在线故障诊断部分依据相应的神经网络模型,对遥测数据进行实时在线的诊断;为了验证基于BP神经网络的卫星故障诊断方法的有效性和优越性,以现有型号三轴稳定近地卫星控制分系统为实验对象,利用该方法对具有代表性的红外地球敏感器和动量轮的相关遥测数据进行分析;通过将该方法的实验结果与基于Kalman滤波的方法的实验结果进行对比分析,表明该方法能够有效地对卫星的故障进行诊断。 相似文献
5.
四管泄漏是电站锅炉的常见故障,不仅导致非正常停炉和经济损失,严重时会危及运行人员的生命安全,深入研究四管泄漏故障规律并采用先进方法对四管泄漏故障类型和位置进行实时诊断具有重要意义;为此,借助火电机组全范围仿真系统,针对不同的协调运行方式,对某600 MW超临界机组锅炉四管泄漏故障的规律进行了详细的仿真研究;在此基础上,采用神经网络与征兆缩放技术相结合的智能诊断方法,实现四管泄漏故障的实时诊断;实验结果表明:该方法对不同协调运行方式下程度不同的四管泄漏故障均可得到具有较高故障分离度的正确诊断结果,具有较好的工程实用性。 相似文献
6.
7.
针对目前使用神经网络诊断故障时出现的输入向量选择困难、网络结构复杂、对并发故障诊断效果不好等问题,提出了基于邻域粗糙集和并行神经网络的故障诊断方法。先利用邻域粗糙集对初始征兆进行约简,留下有价值的征兆作为神经网络的输入向量,然后针对每种故障类型设计一个神经网络。用多个训练好的神经网络来并行诊断故障,综合每个神经网络的结果给出最终的诊断结论。用转子实验台的实验数据对这种故障诊断方法进行验证,结果显示该方法能优化神经网络结构,且神经网络具有训练速度快、诊断正确率高的特点。 相似文献
8.
针对装甲车辆灭火系统电路板规模较大,功能日趋多样与完善的同时,其复杂程度也日益提高,故障层次越来越多,故障现象与故障原因的映射关系更加复杂,组合故障频发,传统的故障诊断方法已不能满足灭火系统电路板故障诊断的要求。设计了基于免疫遗传算法优化的BP神经网络对灭火系统电路板进行故障诊断,并在免疫和遗传过程中保留了部分训练最优解。实现了神经网络收敛速度的提高,使用Matlab编程优化算法并完成了电路板仿真故障的诊断。通过实验验证了该诊断模型的准确性和可靠性,为电气系统通用检测设备的神经网络诊断方法实现提供了理论支撑。 相似文献
9.
以验证马吕斯定律实验为例,介绍了BP神经网络在大学物理实验中的应用,并在M atlab环境下通过训练和仿真实现了曲线的拟合. 相似文献
10.
传统的被动悬架由于阻尼参数不可任意选择和调节,减振性能不好,不能满足乘客的乘坐舒适性;而主动悬架可通过改变减振器的阻尼特性而适应不同的道路和行驶状况,改善乘坐舒适性和操纵稳定性;以汽车主动悬架为研究对象,建立了汽车二自由度1/4车体模型,提出了一种汽车主动悬架模糊神经网络控制方法,设计了模糊神经网络控制器;以B级路面作为随机路面输入,并利用Matlab进行仿真;通过动态仿真对被动悬架和主动悬架的特性进行了对比,仿真结果表明,该模糊神经网络控制器对车身加速度、悬架动挠度和轮胎动载荷都有很好的抑制。 相似文献
11.
12.
13.
提出一种基于LM(Levenberg-Marquardt)算法优化的 BP (Back Propagation)神经网络的多级往复式压缩机压缩机气阀故障诊断方法。以6M25-185/314氢氮气压缩机的 6级压差和6级温差作为网络的输入向量,建立可对往复式压缩机一至六级气阀故障进行在线监测及故障诊断的LM-BP神经网络模型。以100组故障数据作为网络训练样本,30组数据作为网络检测样本进行故障诊断,结果表明,LM-BP神经网络相比于变梯度BP神经网络和RBF神经网络诊断更快速稳定且准确率达到96%以上。利用Matlab软件平台建立的LM-BP 神经网络故障诊断模型,模型简单便于在工程实际中应用。 相似文献
14.
15.
制粉系统是火电厂的主要设备,其安全稳定运行对发电企业的经济生产具有十分重要的意义。针对制粉系统的运行特性和故障分析,提出了基于极化因子神经网络的火电厂制粉系统故障诊断方法,该方法将故障征兆相应的过程变量作为输入,将制粉系统故障类型作为输出,通过训练神经网络建立其系统故障诊断模型,其中训练过程中采用极化因子来自动调整神经网络的收敛速度,从而在满足误差目标的前提下,防止其陷入局部极小。选取实际火电厂制粉系统3个典型故障及其相对应的9个故障征兆参数进行了实验。结果表明,该方法具有良好的收敛性,完全可以满足火电厂制粉系统现场故障诊断的要求。 相似文献
16.
An effective fault diagnosis method of bearing is the key to predictive maintenance of modern industrial equipment. With the single use of equipment failure mechanism or operation of data, it is hard to resolve multiple complex variable working conditions, multiple types of fault and equipment malfunctions and failures related to knowledge and data. In order to solve these problems, a fault diagnosis method based on the fusion of deep learning with a knowledge graph is proposed in this paper. Firstly, the knowledge rules of bearing data is used for entity extraction. Next, the multiscale optimized convolutional neural network (MOCNN) proposed in this paper is used for fault classification to achieve relationship extraction. Finally, the fault diagnosis graph of the bearing is constructed for fault-assisted decision-making as well as the detailed display of fault information. According to experiment analysis, the fault diagnosis model based on MOCNN proposed in this paper, which integrates the end-to-end convolutional neural network and the attention mechanism, still achieves an accuracy of 97.86% under the data set of 160 types of faults. Compared with the deep learning models such as Resnet and Inception in the noise environment of multiple working conditions and variable working conditions, the model proposed in this paper not only shows a faster convergence speed and stable performance, but also a higher accuracy in evaluation indicators, which is beneficial to practical use. 相似文献
17.
为了解决变压器气相色谱分析法故障诊断中存在的操作繁琐、消耗待测气体和载气、检测周期长等缺点, 提出了利用光声光谱技术检测变压器油中CH4, C2H2, C2H4, C2H6, H2五种特征气体的含量并计算C2H2/C2H4, CH4/H2, C2H4/C2H6三对比值数据。将五种SVM类型和四种核函数采用交叉组合建立20种不同的支持向量机模型, 并采用启发式算法对于惩罚因子c和g的取值进行参数寻优, 以建立变压器故障诊断准确率最高、最快运行速度的支持向量机模型。启发式算法主要对比研究了粒子群算法和遗传算法在寻优精度与速度上的效果。仿真实验结果表明C-SVC模型、RBF核函数、遗传算法寻优构成的支持向量机模型对变压器故障的诊断准确率最高, 测试集达到97.5%, 训练集达到98.333 3%, 并且遗传算法的寻优速度快于粒子群算法2倍左右。该方法具有操作简单、非接触性测量、不消耗载气、检测周期短、稳定性和灵敏度高等优点。可以代替传统的气相色谱分析法进行变压器故障诊断, 满足变压器故障诊断的实际工程需要。 相似文献
18.
为了解决变压器气相色谱分析法故障诊断中存在的操作繁琐、消耗待测气体和载气、检测周期长等缺点,提出了利用光声光谱技术检测变压器油中CH4,C2H2,C2H4,C2H6,H2五种特征气体的含量并计算C2H2/C2H4,CH4/H2,C2H4/C2H6三对比值数据。将五种SVM类型和四种核函数采用交叉组合建立20种不同的支持向量机模型,并采用启发式算法对于惩罚因子c和g的取值进行参数寻优,以建立变压器故障诊断准确率最高、最快运行速度的支持向量机模型。启发式算法主要对比研究了粒子群算法和遗传算法在寻优精度与速度上的效果。仿真实验结果表明C-SVC模型、RBF核函数、遗传算法寻优构成的支持向量机模型对变压器故障的诊断准确率最高,测试集达到97.5%,训练集达到98.333 3%,并且遗传算法的寻优速度快于粒子群算法2倍左右。该方法具有操作简单、非接触性测量、不消耗载气、检测周期短、稳定性和灵敏度高等优点。可以代替传统的气相色谱分析法进行变压器故障诊断,满足变压器故障诊断的实际工程需要。 相似文献