首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
钴(Ⅱ)-丁二酮肟体系极谱催化波的机理研究   总被引:3,自引:0,他引:3  
本文研究了钴(Ⅱ)-丁二酮肟(DMG)在氨性底液(pH9)中极谱催化波的机理.用线性扫描伏安法、循环伏安法和阳极溶出法等方法证明,这催化波的形成是由于吸附在汞电极上的钴(Ⅱ)-丁二酮肟螯合物不可逆地还原到零价的“活性钴”,同时在电极表面的“活性钴”又催化了丁二酮肟的还原.  相似文献   

2.
钴(II)-丁二酮肟-亚硝酸盐体系极谱催化波的机理研究   总被引:1,自引:0,他引:1  
倪亚明  李玲  高小霞 《化学学报》1988,46(7):651-656
在氨性底液(PH8)中, 钴(II)-丁二酮肟(DMG)-亚硝酸盐体系产生高灵敏的极谱催化波. 利用吸附伏安法, 测定下限可达1×10^-^1^1mol.dm^-^3Co. 我们用多种电化学方法和紫外可见分光光度法证明, 吸附在汞电极表面的[NH4]2[Co(DMG)2(NO2)2]是有很高电活性的混配化合物, 在复杂的电还原过程中, 不仅Co(II)和DMG被催化还原, 而且NO2^-也被催化还原, 从而产生很大的催化电流, 本文再一次证明, “活性钴"在催化波的形成过程中起着重要的作用.  相似文献   

3.
钴(Ⅱ)-丁二酮肟-亚硝酸盐体系极谱催化波的机理研究   总被引:2,自引:0,他引:2  
在氨性底液(pH8)中,钴(Ⅱ)-丁二酮肟(DMG)-亚硝酸盐体系产生高灵敏的极谱催化波.利用吸附伏安法,测定下限可达1×10~(-11)mol·dm~(-3)Co.我们用多种电化学方法和紫外可见分光光度法证明,吸附在汞电极表面的[NH_4]_2[Co(DMG)_2(NO_2)_2]是有很高电活性的混配化合物,在复杂的电还原过程中,不仅 Co(Ⅱ)和 DMG 被催化还原,而且 NO_2~-也被催化还原,从而产生很大的催化电流,本文再一次证明,“活性钴”在催化波的形成过程中起着重要的作用.  相似文献   

4.
修饰铋盘电极吸附伏安法测定痕量钴的研究   总被引:1,自引:0,他引:1  
研究了利用丁二酮肟修饰铋电极测定钴的吸附伏安分析方法。在0.4 mol/L NH3.H2O-NH4Cl缓冲溶液(pH=9.0)中,Co(Ⅱ)与铋盘电极表面修饰的丁二酮肟形成螯合物。并于-1.20 V附近产生一个灵敏的还原峰。富集时间分别为60 s和280 s时,峰电流与钴的质量浓度在0.01~25μg/mL和0.002~2μg/mL范围内呈线性关系。该还原峰与采用汞电极时的峰形相似、电位相近、灵敏度相当。优化了实验条件,拟订了样品分析的步骤,利用该法测定了合金、维生素B12针剂样品中的微量钴。  相似文献   

5.
钴(II)-丁二肟体系的吸附伏安法研究   总被引:1,自引:0,他引:1  
金文睿  刘坤 《化学学报》1985,43(10):923-929
本文对钴(II)与丁二肟配合物Co(II)A2在悬汞电极上的吸附伏安法作了研究。在-0.60~-0.90V(vs.SCE)Co(II)A2能在悬汞电极上很好地吸附,当电极向阴极方向扫描时,吸附在电极上的Co(II)A2分二步不可逆地还原到Co(O)(Hg)。本文导出了在低覆盖度下富集阶段电极表面吸附量的表达式,实验结果与理论推导相符.理论上分析了不可逆过程线性扫描吸附伏安法的灵敏度,影响灵敏度的主要因素是吸附富集时间,当富集120秒时,检测下限可达1x10[-9]M,此结论得到实验证实。  相似文献   

6.
将金属钴离子引入磷酸铝分子筛APO-5制得CoAPO-5分子筛,再把N,N-双水杨醛缩乙二胺(SALEN)希夫碱通过扩散进入CoAPO-5分子筛孔道并与其中的钴离子配位,形成了CoSALEN配合物,构成CoSALEN/APO-5复合材料.应用物理吸附法,以聚苯乙烯(PS)作粘结剂,将CoSALEN/APO-5涂敷在玻碳电极表面制成修饰电极PS/CoSALEN/APO-5/GCE.循环伏安法(CV)、计时电流法(CA)研究了该修饰电极在不同pH电解质溶液中的电化学行为以及对分子氧的催化还原作用.结果表明,制备的修饰电极能有效地催化分子氧的四电子还原,即氧气被电催化还原为水,据此提出可能的氧还原机理.  相似文献   

7.
纳米结构的钯与金-钯薄膜的制备及其电催化活性   总被引:1,自引:0,他引:1  
应用电位扫描法将Pd(II)离子沉积到玻碳电极表面,形成纳米结构的金属钯薄膜电极.然后在酸性溶液中控制适当的阴极电位,使该薄膜电极的钯吸收足量的活性氢,进而以吸收的氢作还原剂将Au(III)离子还原,制得Au-Pd双金属薄膜电极.扫描电镜、循环伏安法等测试表明,该电极Au-Pd沉积层对乙醇的氧化具有很高的电催化活性.  相似文献   

8.
李玲  倪亚明  高小霞 《化学学报》1988,46(10):1031-1034
研究了镍(II)-丁二酮肟(DMG)体系极谱催化波的行为, 这一体系的极谱催化波可用于生物及岩矿中测定痕量镍和同时测定痕量镍、钴, 并对照研究了Co(II)-DMG体系和Ni(II)-DMG体系的机理.  相似文献   

9.
利用电化学还原的方法制备了4-氨基吡啶共价修饰玻碳电极,通过循环伏安法研究了对苯二酚和邻苯二酚在此修饰电极上的电化学行为.结果表明,4-氨基吡啶修饰电极对对苯二酚和邻苯二酚有较好的电催化活性和电分离作用.利用微分脉冲伏安法,用4-氨基吡啶修饰电极可同时及定量检测对苯二酚和邻苯二酚,在2.5×10~(-6)~1.1×10~(-4)mol/L范围内,二者的微分脉冲伏安响应与浓度呈良好的线性关系.  相似文献   

10.
利用吸附溶出伏安法、极谱催化法测定痕量锗已有报道。但将吸附溶出伏安法与极谱催化法结合进行测定,尚未见报道。我们选择适当的体系和配位体3,4-二羟基苯甲醛(DHB)及氧化剂钒(V),首先使Ge(Ⅳ)-DHB络合物在悬汞电极上于一定电位处吸附富集一定时间,然后电位向负的方向扫描。当达到Ge(Ⅳ)-DHB络合物的还原电位时,Ge(Ⅳ)还原  相似文献   

11.
In the cobalt (II)-dimethylglyoxime-NH3-NH4Cl (pH 9) system, tne complex Co(II)A2 exhibits a sensitive polarographic wave. The mechanism of this catalytic wave has been investigated by linear potential sweep voltammetry, cyclic voltammerty and anedic stripping voltammetry. The experimental evidences showed that a zero-valence “active cobalt” or its complex formed during the irreversible reduction of Co(II)A2, which is adsorbed on the mercury electrode surface, and simultaneously DMG is catalytically reduced by this “active cobalt”. The mechanism of this system with the conflicting explanations of a catalytic hydrogen wave or only adsorptive complex wave is discussed.  相似文献   

12.
The mechanism of cobalt(II) porphyrin-catalyzed benzylic C-H bond amination of ethylbenzene, toluene, and 1,2,3,4-tetrahydronaphthalene (tetralin) using a series of different organic azides [N(3)C(O)OMe, N(3)SO(2)Ph, N(3)C(O)Ph, and N(3)P(O)(OMe)(2)] as nitrene sources was studied by means of density functional theory (DFT) calculations and electron paramagnetic resonance (EPR) spectroscopy. The DFT computational study revealed a stepwise radical process involving coordination of the azide to the metal center followed by elimination of dinitrogen to produce unusual "nitrene radical" intermediates (por)Co(III)-N(?)Y (4) [Y = -C(O)OMe, -SO(2)Ph, -C(O)Ph, -P(O)(OMe)(2)]. Formation of these nitrene radical ligand complexes is exothermic, predicting that the nitrene radical ligand complexes should be detectable species in the absence of other reacting substrates. In good agreement with the DFT calculations, isotropic solution EPR signals with g values characteristic of ligand-based radicals were detected experimentally from (por)Co complexes in the presence of excess organic azide in benzene. They are best described as nitrene radical anion ligand complexes (por)Co(III)-N(?)Y, which have their unpaired spin density located almost entirely on the nitrogen atom of the nitrene moiety. These key cobalt(III)-nitrene radical intermediates readily abstract a hydrogen atom from a benzylic position of the organic substrate to form the intermediate species 5, which are close-contact pairs of the thus-formed organic radicals R'(?) and the cobalt(III)-amido complexes (por)Co(III)-NHY ({R'(?)···(por)Co(III)-NHY}). These close-contact pairs readily collapse in a virtually barrierless fashion (via transition state TS3) to produce the cobalt(II)-amine complexes (por)Co(II)-NHYR', which dissociate to afford the desired amine products NHYR' (6) with regeneration of the (por)Co catalyst. Alternatively, the close-contact pairs {R'(?)···(por)Co(III)-NHY} 5 may undergo β-hydrogen-atom abstraction from the benzylic radical R'(?) by (por)Co(III)-NHY (via TS4) to form the corresponding olefin and (por)Co(III)-NH(2)Y, which dissociates to give Y-NH(2). This process for the formation of olefin and Y-NH(2) byproducts is also essentially barrierless and should compete with the collapse of 5 via TS3 to form the desired amine product. Alternative processes leading to the formation of side products and the influence of different porphyrin ligands with varying electronic properties on the catalytic activity of the cobalt(II) complexes have also been investigated.  相似文献   

13.
Proton-coupled electron-transfer reduction of dioxygen (O(2)) to afford hydrogen peroxide (H(2)O(2)) was investigated by using ferrocene derivatives as reductants and saddle-distorted (α-octaphenylphthalocyaninato)cobalt(II) (Co(II)(Ph(8)Pc)) as a catalyst under acidic conditions. The selective two-electron reduction of O(2) by dimethylferrocene (Me(2)Fc) and decamethylferrocene (Me(10)Fc) occurs to yield H(2)O(2) and the corresponding ferrocenium ions (Me(2)Fc(+) and Me(10)Fc(+), respectively). Mechanisms of the catalytic reduction of O(2) are discussed on the basis of detailed kinetics studies on the overall catalytic reactions as well as on each redox reaction in the catalytic cycle. The active species to react with O(2) in the catalytic reaction is switched from Co(II)(Ph(8)Pc) to protonated Co(I)(Ph(8)PcH), depending on the reducing ability of ferrocene derivatives employed. The protonation of Co(II)(Ph(8)Pc) inhibits the direct reduction of O(2); however, the proton-coupled electron transfer from Me(10)Fc to Co(II)(Ph(8)Pc) and the protonated [Co(II)(Ph(8)PcH)](+) occurs to produce Co(I)(Ph(8)PcH) and [Co(I)(Ph(8)PcH(2))](+), respectively, which react immediately with O(2). The rate-determining step is a proton-coupled electron-transfer reduction of O(2) by Co(II)(Ph(8)Pc) in the Co(II)(Ph(8)Pc)-catalyzed cycle with Me(2)Fc, whereas it is changed to the electron-transfer reduction of [Co(II)(Ph(8)PcH)](+) by Me(10)Fc in the Co(I)(Ph(8)PcH)-catalyzed cycle with Me(10)Fc. A single crystal of monoprotonated [Co(III)(Ph(8)Pc)](+), [Co(III)Cl(2)(Ph(8)PcH)], produced by the proton-coupled electron-transfer reduction of O(2) by Co(II)(Ph(8)Pc) with HCl, was obtained, and the crystal structure was determined in comparison with that of Co(II)(Ph(8)Pc).  相似文献   

14.
The electrochemistry of the bis(1,4,7-triazacyclodecane) cobalt(III) complex at a mercury electrode, HMDE, in aqueous Britton–Robinson buffer solutions was investigated using cyclic voltammetry, double-potential-step chronoamperometry and chronocoulometry. The cyclic voltammetric data were analyzed by digital simulation to confirm and to measure the heterogeneous and homogeneous parameters for the suggested electrode mechanism. Generally, the complex is electrochemically reduced giving rise to two cyclic voltammetric waves. The first wave is a diffusion-controlled reversible wave. It is assigned to the stable Co(III)/Co(II) redox couple. The second one is found to be irreversible and corresponding to a reduction of Co(II) to Co(I) species. The monovalent cobalt, highly unstable, is rapidly protonated, and then forms cobalt hydride. The hydride decomposes to hydrogen molecules and regenerates Co(II) species following a disproportionation pathway. The overall reduction mechanism is concluded to be an EECC kinetics.  相似文献   

15.
本文建立了在铋膜修饰电极上采用方波吸附溶出伏安法同时测定纺织品中痕量Co2+和Ni2+的方法.以NH3-NH4Cl作为缓冲液,在丁二酮肟浓度为10 μmol/L的体系中,Co2和Ni2+的还原峰电位分别为-1.13 V和-1.03 V.当缓冲溶液pH为9.2,富集电位为-0.7V,富集时间为200 s时,C02 +和Ni2+在0.5~50 μg/L范围呈现良好的线性关系,相关系数R2>0.99,其检出限分别为0.79 μg/L和0.96 μg/L,其它金属离子的干扰较小.采用标准加入法测定纺织品中Co>和Ni2+,回收率在94.88%~104.14%之间.  相似文献   

16.
A simple catalytic system that uses commercially available cobalt(II) perchlorate as the catalyst and 3-chloroperoxybenzoic acid as the oxidant was found to be very effective in the epoxidation of a variety of olefins with high product selectivity under mild experimental conditions. More challenging targets such as terminal aliphatic olefins were also efficiently and selectively oxidized to the corresponding epoxides. This catalytic system features a nearly nonradical-type and highly stereospecific epoxidation of aliphatic olefin, fast conversion, and high yields. Olefin epoxidation by this catalytic system is proposed to involve a new reactive Co(II)-OOC(O)R species, based on evidence from H(2)(18)O-exchange experiments, the use of peroxyphenylacetic acid as a mechanistic probe, reactivity and Hammett studies, EPR, and ESI-mass spectrometric investigation. However, the O-O bond of a Co(II)-acylperoxo intermediate (Co(II)-OOC(O)R) was found to be cleaved both heterolytically and homolytically if there is no substrate.  相似文献   

17.
This work reports the determination of trace Co(II) by adsorptive stripping voltammetry on disposable three-electrode cells with on-chip metal-film electrodes. The heart of the sensors was a bismuth-film electrode (BiFE) with Ag and Pt planar strips serving as the reference and counter electrodes, respectively. Metals were deposited on a silicon chip by sputtering while the areas of the electrodes were patterned via a metal mask. Co(II) was determined by square wave adsorptive stripping voltammetry (SWAdSV) after complexation with dimethylglyoxime (DMG). The experimental variables (the DMG concentration, the preconcentration potential, the accumulation time and the SW parameters), as well as potential interferences, were investigated. Using the selected conditions, the 3σ limit of detection was 0.09 μg l−1 of Co(II) (for 90 s of preconcentration) and the relative standard deviation for Co(II) was 3.8% at the 2 μg l−1 level (n = 8). The method was applied to the determination of Co(II) in a certified river water sample. These mercury-free electrochemical devices present increased scope for field analysis and μ-TAS applications.  相似文献   

18.
The electrochemical properties and catalytic activity of a Co(II) complex with the optically active Schiff base derived from (1R,2R)-(–)-cyclohexanediamine and salicylaldehyde have been studied in non-aqueous solutions. When dissolved in deoxygenated non-aqueous solutions, the complex exhibits reversible redox properties for the Co(II)/Co(III) couple. Electrochemical reduction of oxygen and oxidation of cobalt(II) was observed on cyclic voltammograms of solutions containing both dioxygen and the Schiff base-cobalt(II) complex. An anodically formed film on a platinum electrode, studied by means of X-ray photoelectron spectroscopy, revealed the presence of the oxidized Co(III) species. Cyclic voltammetry of oxygenated solutions examined after a period of time indicates an electrochemical activity of coordinated superoxo/peroxo species in the 0.7–1.1 V potential range. In the presence of 4-methyl-1-cyclohexene the cyclic voltammetry curves reveal changes similar to those caused by the removal of oxygen. The GC-MS technique was used to identify some of the products formed by the catalytic oxidation of cyclohexene and 4-methyl-1-cyclohexene. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号