首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ultraviolet, visible (UV/VIS) and differential thermal analysis (DTA) measurements were carried out in order to investigate the optical and thermal properties of various 0.5 mol.% Tm2O3 containing (1 - x)TeO2 + xLiCl glasses in molar ratio. The samples were prepared by fusing the mixture of their respective reagent grade powders in a platinum cricuble at 750 degrees C for 30 min. DTA curves taken in the 23-600 degrees C temperature range with a heating rate of 10 degrees C/min reveal a change in the value of the glass transition temperature, Tg, while melting was not observed for the glasses containing LiCl content less than 50 mol.%. These glasses were found to be moisture-resistant. However, the glasses with LiCl content higher than 50 mol.%, in which a melting peak was observed at Tc = 401 degrees C, were moisture-sensitive. Absorption measurements in the UV/VIS region of the glasses without Tm2O3 content show that the Urbach cutoff occurs at about 320 nm and, is relatively independent of the LiCl content. Six absorption bands were observed in the Tm2O3 doped glasses corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level of Tm3+ ions. The spectra also show that the integrated absorption cross-section of each band depends on the glass composition. Judd-Ofelt theory was used to determine the Judd-Ofelt parameters as well as the radiative transition probabilities for the metastable levels of Tm3+ ions in (0.3)LiCl + (0.7) TeO2: 0.01 Tm2O3 glass which is moisture-resistant.  相似文献   

2.
An investigations of the optical absorption and fluorescence spectra of 0.2 mol% Er2O3 in mixed alkali borate glasses of the type 67.8B2O3 x xLi2O(32-x)Na2O, 67.8B2O3 x xLi2O(32-x)K2O and 67.8B2O3 x xNa2O(32-x)K2O (where x = 8, 12, 16, 20 and 24) are presented. The glasses were obtained by quenching melts consisting of H3BO3, Li2CO3, Na2CO3, K2CO3 and Er2O3 (950-1100 degrees C, 1.5-2 h) between two brass plates. Spectroscopic parameters like Racah (E1, E2 and E3), spin-orbit (xi(4f)) and configuration interaction (alpha) parameters are deduced as function of x. Using Judd-Ofelt theory, Judd-Ofelt intensity parameters (omega2, omega4 and omega6) are obtained. Radiative and non-radiative transition rates (A(T) and W(MPR)), radiative lifetimes (tauR), branching ratios (beta) and integrated absorption cross-sections (sigma) have been computed for certain excited states of Er3+ in these mixed alkali borate glasses. Emission spectra have been studied for all the three Er3+ doped mixed alkali borate glasses. The present paper throws light on the trends observed in the intensity parameters, radiative lifetimes, branching ratios and emission cross-sections as a function of x in these borate glasses, keeping in view the effect of mixed alkalies in borate glasses.  相似文献   

3.
A series of novel Er3+/Yb3+ co-doped 75TeO2-(25-x)Nb2O5-xWO3 (TNW: x=0, 3, 6, 9, 12, and 15 mol%) glasses have been prepared. Effect of WO3 on the thermal stability and spectroscopic properties of Er3+/Yb3+ co-doped niobic tellurite glasses have been investigated. With WO3 content increasing from 0 to 15 mol%, the fluorescence full width at half maximum (FWHM), the peak of stimulated emission cross-section (sigmaepeak), the measured lifetime (taum), and quantum efficiency (eta) change from 71 nm, 8.47x10(-21) cm2, 2.86 ms, 84.1% to 76 nm, 7.22x10(-21) cm2, 3.14 ms, 88.9%, respectively. The FWHM and sigmaepeak of Er3+ ions in different glass hosts were compared; the obtained data reveals that this new TNW4 glass may be a potentially useful candidate material host for broadband amplifiers.  相似文献   

4.
Up-conversion luminescence properties of a Tm3+/Yb3+ codoped oxyfluoride glass-ceramics under 980 nm excitation are investigated. Intense blue emission centered at 476 nm, corresponding to 1G4-->3H6 transitions of Tm3+ was simultaneously observed in the transparent oxyfluoride glass ceramics at room temperature. The intensity of the blue up-conversion luminescence in a 1 mol% YbF3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The reason for the intense Tm3+ up-conversion luminescence in the oxyfluoride glass-ceramics is discussed. The dependence of up-conversion intensities on excitation power and possible up-conversion mechanism are also evaluated.  相似文献   

5.
This paper reports on the spectral properties of Mn2+, Co2+ and Ni2+ ions doped B2O3-ZnO-PbO glasses. XRD, FT-IR spectra and DSC profiles of these glasses have also been carried out, and the FT-IR profiles have shown the presence of both BO3 and BO4 units. It is interesting to notice that the FT-IR peak positions are slightly shifted towards higher energy with an increase in transition metal ion concentration change. From the measured DSC thermograms, glass transition (T(g)), crystallization (T(c)) and temperature of melting (T(m)) have been evaluated. From the UV absorption spectra of Mn2+, Co2+ and Ni2+ ions doped glasses, both direct and indirect optical band gaps have been calculated. The visible absorption spectra of Mn2+:glasses have shown a broad absorption band at 520 nm (6A1g(S) --> 4T1g(G)); with Co2+ ions one absorption band at 605 nm (4A2(4F) --> 4T1(4P)) and another at 1450 nm (4A2(4F) --> 4T1(4F)); and for Ni2+:glasses three absorption bands at 420 nm (3A2g(F) --> 3T1g(P)), 805 nm (3A2g(F) --> 1Eg(D)) and 880 nm (3A2g(F) --> 3T1g(F)) have been observed. For Mn2+:glasses, upon excitation with 262 nm, a green emission (539 nm) with a slight blue shift; and with 392 nm, a green emission (534 nm) with a slight red shift with Mn2+ ions concentration change (0.2-0.5 mol%) has been observed. This green emission has been assigned to (4T1(G) --> 6A1(S)) d-d transition of Mn2+ ions that are in tetrahedral co-ordination. For 0.5 mol% Co2+ ions doped glass, upon excitation with 580 nm, a red emission (625 nm) has been observed which originates from 2E(2G) --> 4A2(4F) transition of Co2+ ions in tetrahedral co-ordination. For Ni2+ ions doped glasses upon excitation with 420 nm, a green (577 nm) and red (670 nm) emissions are observed and are assigned to (1T2g(D) --> 3A2g(F)) and (1T2g(D) --> 3T2g(F)) d-d transitions of Ni2+ ions in octahedral co-ordination.  相似文献   

6.
We present the results of a study that uses theoretical and experimental methods to investigate the characteristics of the upconversion luminescence of Tm3+/Yb3+ codoped TeO2-BiCl3 glass system as a function of the BiCl3 fraction. These glasses are potentially important in the design of upconversion fiber lasers. Effect of local environment around Tm3+ on upconversion fluorescence intensity was analyzed by theoretical calculations. The structure and spectroscopic properties were investigated in the experiments by measuring the Raman spectra, IR transmission spectra, and absorption and fluorescence intensities at room temperature. The results indicate that blue luminescence quantum efficiency increases with increasing BiCl3 content from 10 to 60 mol%, which were interpreted by the increase of asymmetry of glass structure, decrease of phonon energy and removing of OH- groups.  相似文献   

7.
This paper reports on the spectral analysis of Eu3+ or Tb3+ ions (0.5 mol%) doped heavy metal oxide (HMO) based zinc lead borate glasses from the measurement of their absorption, emission spectra and also different physical properties. From the XRD, DSC profiles, the glass nature and glass thermal properties have been studied. The measured emission spectrum of Eu3+ glass has revealed five transitions (5D0-->7F0, 7F1, 7F2, 7F3 and 7F4) at 578, 591, 613, 654 and 702 nm, respectively, with lambdaexci=392 nm (7F0-->5L6). In the case of Tb3+:ZLB glass, four emission transitions such as (5D4-->7F6, 7F5, 7F4 and 7F3) that are located at 489, 542, 585 and 622 nm, respectively, have been measured with lambdaexci=374 nm. For all these emission bands decay curves have been plotted to evaluate their lifetimes and the emission processes that arise in the glasses have been explained in terms of energy level schemes.  相似文献   

8.
The spectral properties of Er3+/Yb3+ codoped tungsten-tellurite (WT) glasses have been investigated. The measured absorption spectra are analyzed by Judd-Ofelt theory. The compositional change of intensity parameter omega2 is attributed to the change in the covalency between the Er3+ and oxygen ions, the asymmetry in the local structures around the Er3+ ions can be neglected. The lifetimes of 4I(13/2) level of Er3+ in WT glasses are measured and comparable with other TeO2-based glasses. The stimulated emission cross-section is calculated based on McCumber theory. The fluorescence full width at half maximum (FWHM) and the emission cross-section (sigma(peak)) of the 4I(13/2) --> 4I(15/2) transition of Er3+ in different glass hosts have been compared. The suitability of such WT glasses as host materials for 1.5 microm broadband amplification is discussed.  相似文献   

9.
以聚乙二醇为配位剂,用水热法制备出纳米级上转换发光粉Yb3+和Tm3+共掺杂的NaY(WO4)2。研究了不同cYb/cTm对上转换发光强度的影响,实验表明当cYb/cTm=5∶1时,上转换发光强度最强。用XRD,SEM确定了Yb3+和Tm3+共掺杂的NaY(WO4)2是四方晶系,其粒径在25~35 nm范围,且分散均匀。用980 nm半导体激光器(LD)对其进行激发,在室温下观察到了365 nm附近紫外发射峰、456 nm,476 nm附近的蓝光发射峰和648 nm附近的红光发射峰,分别对应于Tm3+离子的1D2→3H6,1D2→3F4,1G4→3H6和1G4→3F4的跃迁。根据泵浦功率与发光强度的关系得出紫外发射峰、蓝光和红光发射均为双光子过程。  相似文献   

10.
Er3+, Yb3+ and Tm3+ codoped fluorophosphate glasses emitting blue, green and red upconversion luminescence at 970 nm laser diode excitation were studied. It was shown that Tm3+ behaves as the sensitizer to Er3+ for the green upconversion luminescence through the energy transfer process: Tm3+:3H4+Er3+:4I 15/2-->Er3+:4I 9/2+Tm3+:3H6, and for the red upconversion luminescence through the energy transfer process: Tm3+:3F4+Er3+:4I 11/2-->Tm3+:3H6+Er3+:4F 9/2. Moreover, Er3+ acts as quenching center for the blue upconversion luminescence of Tm3+. The sensitization of Tm3+ to Er3+ depends on the concentration of Yb3+. The intensity of blue, green and red emissions can be changed by adjusting the concentrations of the three kinds of rare earth ions. This research may provide useful information for the development of high color and spatial resolution devices and white light simulation.  相似文献   

11.
Glasses with the composition of (99.5-chi)GeO2-chiWO(3)-0.5Bi2O3 (chi=3, 6, 9 mol%) and (99.5-psi)GeO2-psiBaO-0.5Bi2O3 (psi=3, 6, 9 mol%) were prepared. Their thermal, emission and absorption measurements were carried out. The near-infrared super broadband emission of the prepared samples peak around 1.3 microm was discovered. The results indicated, in GeO2-WO3-Bi2O3 glasses, increasing amount of WO3 brought about the broadening of FWHM, prolonging of lifetime and enhancing of thermal stabilities. While in GeO2-BaO-Bi2O3 glasses, concomitant with the increasing amount of BaO were the broadened FWHM as well as the prolonged lifetime. Red-shift tendency of absorption edges was discovered in both two groups of glasses indicating the Bi5+ ions might take responsibility for the broadband emission.  相似文献   

12.
Up-conversion luminescence characteristics under 975 nm excitation have been investigated with Tb3+/Tm3+/Yb3+ triply doped tellurite glasses. Here, green (547 nm: (5)D(4)-->(7)F(4)) and red (660 nm: (5)D(4)-->(7)F(2)) up-conversion (UC) luminescence originating from Tb3+ is observed strongly, because of the quadratic dependences of emission intensities on the excitation power. Especially, the UC luminescence was intensified violently with the energy transfer from the Tm3+ ions involves in the Tb3+ excitation. To the Tb3+/Tm3+/Yb3+ triply doped glass system, a novel up-conversion mechanism is proposed as follows: the energy of (3)G(4) level (Tm3+) was transferred to (5)D(4) (Tb(3+)) and the 477-nm UC luminescence of Tm3+ was nearly quenched.  相似文献   

13.
The absorption and upconversion fluorescence spectra of a series of Er3+/Yb3+-codoped xBi(2)O(3)-(90-x)GeO2-10Na(2)O (BGN x, x=31, 36, 41, 46 and 51 mol%) glasses have been studied. Intense green and red emission bands at around 533, 548 and 659 nm, corresponding to the 2H(11/2)-->4I(15/2), 4S(3/2)-->4I(15/2) and 4F(9/2)-->4I(15/2) transitions of Er3+, respectively, were simultaneously observed at room temperature. The dependence of intensities of upconversion emission on excitation power and possible upconversion mechanisms were evaluated and analyzed. The important role of Bi(2)O(3) in upconversion intensity is observed and its influence on the green (533 and 548 nm) and red (659 nm) emissions is compared and discussed. The influence of Bi(2)O(3) on the upconversion emissions has been investigated based on the IR spectra.  相似文献   

14.
Yttrium tungstate precursors with novel 3D hierarchical architectures assembled from nanosheet building blocks were successfully synthesized by a hydrothermal method with the assistance of sodium dodecyl benzenesulfonate (SDBS). After calcination, the precursors were easily converted to Y(2)(WO(4))(3) without an obvious change in morphology. The as-prepared precursors and Y(2)(WO(4))(3) were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra, respectively. The results reveal that the morphology and dimensions of the as-prepared precursors can be effectively tuned by altering the amounts of organic SDBS and the reaction time, and the possible formation mechanism was also proposed. Upon ultraviolet (UV) excitation, the emission of Y(2)(WO(4))(3):x mol% Eu(3+) microcrystals can be tuned from white to red, and the doping concentration of Eu(3+) has been optimized. Furthermore, the up-conversion (UC) luminescence properties as well as the emission mechanisms of Y(2)(WO(4))(3):Yb(3+)/Ln(3+) (Ln = Er, Tm, Ho) microcrystals were systematically investigated, which show green (Er(3+), (4)S(3/2), (2)H(11/2)→(4)I(15/2)), blue (Tm(3+), (1)G(4)→(3)H(6)) and yellow (Ho(3+), (5)S(2)→(5)I(8)) luminescence under 980 nm NIR excitation. Moreover, the doping concentration of the Yb(3+) has been optimized under a fixed concentration of Er(3+) for the UC emission of Y(2)(WO(4))(3):Yb(3+)/Er(3+).  相似文献   

15.
The present work aims to study the structure and variation of optical band gap, density and dc electrical conductivity in vanadium strontium borate glasses. The glass systems xV2O5.(40-x)SrO.60B2O3 and xV2O5.(60-x)B2O3.40SrO with x varying from 0 to 20 mol% were prepared by normal melt quench technique. Structural studies were made by recording IR transmission spectra. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. The position of absorption edge and hence the value of the optical band gap was found to depend on the semiconducting glass composition. The absorption in these glasses is believed to be associated with indirect transitions. The origin of Urbach energy is associated with the phonon-assisted indirect transitions. The change in both density and molar volume was discussed in terms of the structural modifications that take place in the glass matrix on addition of V2O5. dc conductivity of the glass systems is also reported. The change of conductivity and activation energy with composition indicates that the conduction process varies from ionic to polaronic one.  相似文献   

16.
Optical absorption and fluorescence spectra of Dy3+ doped in sodium zinc phosphate glasses have been reported. Judd-Ofelt theory has been applied to analyze the spectra and determine the optical parameters such as transition probabilities, radiative lifetime, stimulated emission cross-section, etc. The fluorescence intensity of Dy3+ corresponding to 4F9/2-->6H13/2 transition increases with increasing concentration of Dy3+ but at higher concentrations, concentration quenching is observed. The radiative lifetime of the 4F9/2 level at 1 mol% concentration of Dy3+ in this host is found to be 541 micros. Emission corresponding to 4F9/2-->6H13/2 transition (570 nm) is observed on excitation with NIR radiation due to upconversion. An attempt is made to explain this observation.  相似文献   

17.
Electron paramagnetic resonance (EPR) and optical absorption spectra of Mn2+ ions in different alkali lead tetraborate glasses 90R2B4O7+9.25PbO+0.75MnSO4 (R=Li, Na and K) and 90Li2B4O7+(10-x)PbO+xMnSO4 (x=0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2 mol%) have been studied. The EPR spectrum of all the glass samples exhibit three resonance signals at g=2.0, 3.3 and 4.3. The resonance signal at g=2.0 is attributed to the Mn2+ ions in an environment close to an octahedral symmetry. The resonance signals at g=3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn2+ ions. The effect of temperature (123-433 K) and the composition dependence of EPR signals have been studied for Mn2+ ions in lithium lead tetraborate glasses. It is interesting to observe that the variation of paramagnetic susceptibility (chi) with temperature obeys Curie-Weiss law. From the slope of 1/chi versus T graph, the Curie constant (C) has been evaluated. The zero-field splitting (zfs) parameter D has been calculated for different alkali lead tetraborate glasses from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits three bands. An intense and broad band at lower energy side has been assigned to the spin-allowed (5Eg-->5T2g) transition of Mn3+ ions in an octahedral symmetry. The intense and sharp band and a broad band at higher energy side have been assigned to charge transfer bands. A red shift is observed with increase of alkali ion size. The optical band gap energy (Eopt) decreases, whereas the Urbach energies (DeltaE) increases with increase of Mn content. The theoretical values of optical basicity (Lambdath) of the glasses have also been evaluated.  相似文献   

18.
The new Er3+/Yb3+ co-doped 70TeO2-5Li2O-(25-x)B2O3-xGeO2 (x = 0, 5, 10, 15 fand 20 mol.%) glasses were prepared. The thermal stability, absorption spectra, emission spectra and lifetime of the 4I(13/2) level of Er3+ ions were measured and studied. The FT-IR spectra were carried out in order to investigate the structure of local arrangements in glasses. It is found that the thermal stability, absorption cross-section of Yb3+, emission intensity and lifetime of the 4I(13/2) level of Er3+ increase with increasing GeO2 content in the glass composition, while the fluorescence width at half maximum (FWHM) at 1.5 um of Er3+ is about 70 nm. The obtained data suggest that this system glass can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

19.
Dy(3+)-doped fluorophosphate glasses with composition (in mol%) (56-x/2)P(2)O(5)+17K(2)O+(15-x/2)BaO+8Al(2)O(3) + 4AlF(3)+ xDy(2)O(3), x=0.01, 0.05, 0.1, 1.0 and 2.0, have been prepared by melt quenching technique. The luminescence spectra and lifetimes of (4)F(9/2) level of Dy(3+) ions in these glasses have been measured using the 457.9 nm line of argon ion laser as an excitation source. The free-ion calculation and Judd-Ofelt analysis have been performed. The room temperature emission spectra corresponding to (4)F(9/2)-->(6)H(J) (J=7/2, 9/2, 11/2, 13/2 and 15/2) transitions of Dy(3+) ions were measured. The fluorescence decay from (4)F(9/2) level have been measured by monitoring the intense (4)F(9/2)-->(6)H(13/2) transition. The lifetime of the decay is obtained by taking the first e-folding times of the decay curves and is found to decrease with increase in Dy(3+) ions concentration due to concentration quenching. The decay curves are found to be perfectly single exponential for samples with low Dy(3+) ion concentration. The non-exponential decay curves observed for higher concentrations are well fitted to the Inokuti-Hirayama model for S=6, which indicates that the energy transfer between the donor and acceptor is of dipole-dipole nature. The energy transfer parameter and donor to acceptor interaction increases with Dy(3+) ions concentration due to increase of energy transfer from Dy(3+) (donor) to unexcited Dy(3+) (acceptor) ions.  相似文献   

20.
以聚乙二醇为络合剂,采用水热法成功制备了NaGd(WO4)2:Yb3+,Tm3+纳米粉。运用X射线粉末衍射、扫描电镜和光谱分析对制备的样品结构和发光性能进行了表征。结果表明,NaGd(WO4)2:Yb3+,Tm3+为四方晶系,晶粒尺寸约为50 nm。在980 nm半导体激光器激发下获得了发射光谱,有3个发射峰,发光中心位于455,476和650 nm,分别对应1D2→3F4,1G4→3H6,1G4→3F4的跃迁。讨论了Yb3+,Tm3+能量转换过程和机制。泵浦功率与发光强度关系表明,455,476和650 nm的3个发射均属于三光子过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号