首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— We measured excision repair of ultraviolet radiation (UVR)-induced pyrimidine dimers in DNA of the corneal epithelium of the marsupial, Monodelphis domestica , using damage-specific nucleases from Micrococcus luteus in conjunction with agarose gel electrophoresis. We observed that 100 J -2 of UVR from aFS–40 sunlamp(280–400 nm) induced an average of 2.2 ± 0.2 times 10-2 endonuclease-sensitive sites per kilobase (ESS/kb) (pyrimidine dimers) and that ∼ 50% of the dimers were repaired within 12 h after exposure. We also determined that an exposure of 400 J m-2 was needed to induce comparable numbers of pyrimidine dimers (2.5 times 10-2) in the DNA of skin of M. domestica in vivo . In addition, we found that 50% of the dimers were also removed from the epidermal cells of M. domestica within 12 h after exposure. A dose of 100 J m-2 was necessary to induce similar levels of pyrimidine dimers (2.0 ± 0.2 times 10-2) in the DNA of the cultured marsupial cell line Pt K2 ( Potorous tridactylus ).  相似文献   

2.
Excision repair of pyrimidine dimers induced by 254 nm UV was examined in the genome overall and in a specific sequence containing a transfected gene for hygromycin B resistance, in RBCF-1 cells derived from a goldfish, by the use of UV endonuclease of Micrococcus luteus and alkaline agarose gel electrophoresis. More than 40% of dimers were removed from the specific sequence, while about 20% were removed from the genome overall, within 24 h after exposure to UV (2.5-7.5 J/m2).  相似文献   

3.
Abstract— A UV-specific endonuclease was used to monitor the presence of UV-induced pyrimidine dimers in the DNA of Chlamydomonas reinhardi . All of the dimers induced by 50 J/m2 of 254 nm light are removed by a 2 h exposure to photoreactivating light. Nearly all of the dimers are removed by the wild-type strain of Chlamydomonas upon incubation for 24h in the dark. Two UV-sensitive mutants, UVS 1 and UVS 6, are deficient in removal of dimers in the dark. These results are interpreted to mean that Chlamydomonas has an excision-repair pathway for coping with UV-induced damage.  相似文献   

4.
Abstract —Repair of DNA damage produced by ultraviolet light or 5-methylisopsoralen in normal and xeroderma pigmentosum human cells involves many similar steps. Aphidicolin and cytosine arabinoside block repair of both kinds of damage with similar efficiency, indicating that DNA polymerase a has a major role in repair for these lesions. In xeroderma pigmentosum cells of various complementation groups, the relative efficiency of excision repair for both ultraviolet- and 5-methylisopsoralen-induced damage was group A < C < D, indicating a close resemblance between both kinds of lesions in relation to the repair deficiencies in these groups. At high doses, the maximum rate of repair of damage by ultraviolet light was about twice that for methylisopsoralen damage, possibly because ultraviolet-induced damage forms a substrate that is more readily recognized and excised than that of the psoralen adducts. Differences in the structural distortions to DNA caused by these kinds of damage could be detected using single strand specific nucleases which excised dimers but not 5-MIP adducts from double strand DNA.  相似文献   

5.
Abstract— The survival curve obtained after UV irradiation of the unicellular cyanobacterium Synecho-cystis is typical of a DNA repair competent organism. Inhibition of DNA replication, by incubating cells in the dark, increased resistance to the lethal effects of UV at higher fluences. Exposure of irradiated cells to near ultraviolet light(350–500 nm) restored viability to pre-irradiation levels. In order to measure DNA repair activity, techniques have been developed for the chromatographic analysis of pyrimidine dimers in Synechocystis. The specificity of this method was established using a haploid strain of Sacchar-omyces cerevisiae. In accordance with the physiological responses of irradiated cells to photoreactivating light, pyrimidine dimers were not detected after photoreactivation treatment. Incubation of irradiated cells under non-photoreactivating growth conditions for 15 h resulted in complete removal of pyrimidine dimers. It is concluded that Synechocystis contains photoreactivation and excision repair systems for the removal of pyrimidine dimers.  相似文献   

6.
Abstract Direct determination has been made of cyclobutyl pyrimidine dimer induction and excision repair in an episomal SV40 DNA population in vivo . Maintaining SV40-transformed human (GM637) cells in confluent culture results in amplification of a mutant SV40 episome to high copy number. T4 endonuclease V was used to quantify the induction and repair of cyclobutane dimers in the SV40 episome and genomic DNA of the same cells. Differences in both parameters were observed cyclobutane dimers were induced at 1.5–2-fold greater frequency in episomal DNA and excised at a reduced rate compared to genomic DNA in the host cells.  相似文献   

7.
Abstract— ICR 2A frog and normal human skin fibroblasts were exposed to either 5 J/m2 of 254 nm UV or 50 kJ/m2 of the Mylar-filtered solar UV wavelengths produced by a fluorescent sunlamp. Following these approximately equitoxic treatments, cells were incubated in medium containing the DNA synthesis inhibitors hydroxyurea (HU) and 1–β-D-arabinofuranosyl cytosine (ara C) for 0–20 min (human fibroblasts) or 0–4 h (frog cells) to accumulate DNA breaks resulting from enzymatic incision during excision repair. It was found that breaks were formed in human cells at about a 200-f-old higher rate compared with the ICR 2A cells indicating a relatively low capacity for excision repair in the frog cells. In addition, the rate of DNA break formation in solar UV-irradiated cells was only one-third of the level detected in 254 nm-irradiated cells. This result is consistent with the conclusion that the pathway(s) involved in the repair of solar UV-induced DNA damages differs from the repair of lesions produced in cells exposed to 254 nm UV.  相似文献   

8.
Abstract —As an aid to understanding the relationship between dimer repair and cellular recovery, we have studied dimer removal and replication of dimer-containing DNA in Chinese hamster ovary (CHO) cells irradiated with ultraviolet light (254 nm). These investigations demonstrated that (1) dimers are not excised as polynucleotides of less than 500,000 mol. wt, (2) fractionation of the ultraviolet dose does not enhance dimer excision, (3) dimer-containing DNA is replicated in ultraviolet-irradiated CHO cells, and (4) the dimers are conserved in the replicated DNA. These findings support the proposed mechanism of bypass of photoproducts during DNA replication in mammalian cells.  相似文献   

9.
Abstract— Ultraviolet-induced pyrimidine dimers were not found to be excided from the DNA of Chinese hamster cells in small oligounucleotides. At doses whereby many cells survive the radiation, the dimers were still associates with the large polynucleotides even after 48 hr of postirradiation incubation.  相似文献   

10.
Abstract— We have developed and used a simple technique to estimate the quantity of pyrimidine dimers in unlabeled cellular DNA. DNA is extracted from cells, treated with an endonuclease specific for dimers, and its molecular weight estimated by its electrophoretic mobility on alkaline agarose slab gels. The technique is used to show that cells from thyroid tissue of the fish Poecilia formosa have photoreactivating activity towards dimers in the cellular DNA.  相似文献   

11.
Abstract —Starvation of early-log-phase Tetrahymena pyriformis in non-nutrient phosphate buffer for 24 h results in a 40 per cent increase in cell number, as well as a complete cessation of DNA synthesis. Low levels of DNA synthesis are detectable between 1 and 2h after starved cells are transferred to a nutrient medium. Larger amounts of DNA synthesis are detected after the first 2 h of refeeding, and one round of replication is complete 4.5 h after refeeding. Damage, caused by sublethal doses of UV radiation (254 nm) administered just prior to refeeding, to the DNA of starved Tetrahymena appears to be corrected by an excision-repair process after refeeding of starved, irradiated cells. Changes in buoyant density of DNA synthesized, rate of DNA synthesis, and the chromatographic distribution of photoproducts were investigated following refeeding of starved, irradiated cells. Excision repair begins 1 h after refeeding and appears to be essentially complete within 7 h. During this time, thymine dimers produced by irradiation are removed. Semiconservative DNA synthesis commences 2–3 h after the first appearance of excision repair. In addition, between 3 and 8 h after refeeding, the rate of DNA synthesis in irradiated, refed cultures is much lower than the rate of DNA synthesis in unirradiated, refed cultures. Also, the specific activity in vitro of DNA polymerase from irradiated refed cells is very much greater than that of polymerase from unirradiated, refed cells.  相似文献   

12.
Abstract It has been previously shown that Micrococcus luteus possesses a pyrimidine dimer-specific endonuclease which in vitro , functions as both an endonuclease and DNA-glycosylase. To determine if these combined activities function in vivo , we have isolated and examined the excision products of UV-irradiated M. luteus . In addition, we have devised a procedure to isolate and examine the excision products from UV-irradiated human fibroblasts to determine if an endonuclease/glycosylase activity functions in the excision of UV-induced pyrimidine dimers in human fibroblasts. We find that, in vivo , an endonuclease/glycosylase mechanism is utilized extensively in the repair of pyrimidine dimers by M. luteus , but that human fibroblasts do not appear to use this mechanism.  相似文献   

13.
PHOTOREPAIR OF PYRIMIDINE DIMERS IN HUMAN SKIN IN VIVO   总被引:6,自引:0,他引:6  
Abstract— The exposure of human skin in vivo to UV radiation emitted from a sunlamp induces the formation of pyrimidine dimers. The number of dimers, as detected by UV-endonuclease, decreases following exposure of the UV–irradiated skin to visible wavelengths of light. These results suggest that humans possess a mechanism by which pyrimidine dimers are photorepaired upon illumination of human skin in vivo with visible light.  相似文献   

14.
THE FATE OF PYRIMIDINE DIMERS IN ULTRAVIOLET-IRRADIATED CHLAMYDOMONAS   总被引:1,自引:0,他引:1  
Abstract— We have developed a chromatographic technique for the separation of 32P-labeled pyrimidine nucleotide dimers of the form PypPy from 32P-phosphate in enzymatic hydroly sates of ultraviolet-irradiated DNA. Application of this technique to 32P-labeled Chlamydomonas reinhardii shows that ultraviolet irradiation of this organism induces pyrimidine dimers in both nuclear and chloroplast DNA. We have found no evidence that these dimers are excised from either DNA species after several hours incubation under non-photoreactivating conditions. A function has been derived to permit the pyrimidine-dimer content determined from radioactive-thymine-labeled cells to be conveniently compared to that obtained from 32P-phosphate-labeled cells.  相似文献   

15.
An immunoslot blot assay was developed to detect pyrimidine dimers induced in DNA by sublethal doses of UV (254 nm) radiation. Using this assay, one dimer could be detected in 10 megabase DNA using 200 ng or 0.5 megabase DNA using 20 ng irradiated DNA. The level of detection, as measured by dimer specific antibody binding, was proportional to the dose of UV and amount of irradiated DNA used. The repair of pyrimidine dimers was measured in human skin fibroblastic cells in culture following exposure to 0.5 to 5 J m-2 of 254 nm UV radiation. The half-life of repair was approximately 24, 7 and 6 h in cells exposed to 0.5, 2 and 5 J m-2 UV radiation, respectively. This immunological approach utilizing irradiated DNA immobilized to nitrocellulose should allow the direct quantitation of dimers following very low levels of irradiation in small biological samples and isolated gene fragments.  相似文献   

16.
PHOTOSENSITIZED SPLITTING OF PYRIMIDINE DIMERS   总被引:1,自引:0,他引:1  
Abstract— The photosensitized monomerization of cis-syn and trans-syn cyclobutane-type thymine dimers, and the cis-syn thymine-uracil dimer, using anthraquinone derivatives as sensitizers, is described.  相似文献   

17.
18.
Abstract— A new simple in vitro assay for the determination of pyrimidine dimers and/or apurinic/apyrimidinic sites in non-radioactive DNA has been developed. In this procedure, DNA substrates of uniform length-which may be supercoiled, partially relaxed, relaxed or linear-are treated with agents which produce specific single strand nicks at the site of the lesion. The number of lesions per molecule can be expressed as a function of the amount of single-stranded molecules left intact after the specific nicking treatment. Unreacted molecules, which retain the original uniform length, are separated from the other smaller reaction products by electrophoresis on an alkaline agarose gel. In the case of circular molecules, the substrate is linearized by the use of an appropriate restriction endonuclease before loading on the gel. The amount of intact DNA molecules is obtained by integrating the corresponding peak of absorption after densitometric scan of the negative of the gel picture. This assay can detect up to eight damaged sites per duplex molecule. This method could be particularly useful when dealing with mixtures of DNA with different degrees of supercoiling or for comparisons between linear and circular DNA substrates.  相似文献   

19.
INDUCTION OF phr GENE EXPRESSION BY PYRIMIDINE DIMERS IN Escherichia coli   总被引:2,自引:0,他引:2  
The photoreactivating enzyme (PRE) is concerned with mainly two kinds of light wavelength. The PRE splits UVC (254 nm)-induced pyrimidine dimer by absorbing UVA (320–380 nm) or visible light in its chromophore. The present paper demonstrates that the phr gene expression was efficiently induced in an excision defective strain (uvrA∼) after irradiation by UVC and UVB (290-320 nm), but not by UVA and visible light. In addition, the induced activity was significantly depressed by irradiation with UVA and visible light. Therefore we conclude that the phr gene expression can be induced by pyrimidine dimers.  相似文献   

20.
Abstract— A haploid respiration-deficient (ρ-) mutant of Saccharomyces cerevisiae exhibits a lower ability to excise ultraviolet-induced pyrimidine dimers in various post-irradiation treatments as compared to the original respiration-competent wild-type strain. This decrease in excision may account for the inability of ρ- strains to show liquid-holding recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号