首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Plasma research poses a radiation hazard. Due to the program of deuterium plasma research using the PF-1000 device, it is an intensive source of neutrons (up to 1011 n · pulse ?1) with energy of 2,45 MeV and ionizing electromagnetic radiation with a broad energy spectrum. Both types of radiation are mostly emitted in ultra-short pulses (~100 ns). The aim of this work was to test and calibrate the RSS-131 radiometer for its application in measurements of ultra-short electromagnetic radiation pulses with broad energy spectrum emitted during PF-1000 discharge. In addition, the results of raw measurements performed in the control room are presented.  相似文献   

2.
Laser-induced backside wet and dry etching (LIBWE and LIBDE) methods were developed for micromachining of transparent materials. Comparison of these techniques is helpful in understanding the etching mechanism but was not realized due to complications in setting up comparable experimental conditions. In our comparative investigations we used a solid tin film for dry and molten tin droplets for wet etching of fused-silica plates. A tin–fused-silica interface was irradiated through the sample by a KrF excimer laser beam (λ=248 nm, FWHM=25 ns); the fluence was varied between 400 and 2100 mJ/cm2. A significant difference between the etch depths of the two investigated methods was not found. The slopes of the lines fitted to the measured data (slLIBDE=0.111 nm/mJ cm−2, slLIBDE=0.127 nm/mJ cm−2) were almost similar. Etching thresholds for LIBDE and LIBWE were approximately 650 and 520 mJ/cm2, respectively. To compare the dependence of etch rates on the pulse number, target areas were irradiated at different laser fluences and pulse numbers. With increasing pulse number a linear rise of depth was found for wet etching while for dry etching the etch depth increase was nonlinear. Secondary ion mass spectroscopic investigations proved that this can be due to the reconstruction of a new thinner tin-containing surface layer after the first pulse.  相似文献   

3.
We have investigated temporal behavior of the photoluminescence (PL) spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532 nm laser radiation and gamma-rays. Under ∼100 W/cm2 laser radiation, the PL intensity (IPL) increases with irradiation time upto about 500 s and thereafter declines linearly. The wavelength of the PL emission (λpeak) exhibits a blue-shift with exposure time. Upon simultaneous irradiation by 100 W/cm2 532-nm laser, as well as 0.57 and 1.06 MeV gamma-rays, the temporal behaviors of both IPL and λpeak are significantly different; IPL increases to a saturation level, and the magnitude of the blue-shift in λpeak is reduced. We discuss possible mechanisms underlying these results.  相似文献   

4.
We investigated defect production in n-type GaAs with two different free-carrier densities (4×1014 and 1×1016/cm3) by using particles liberated from radionuclides. 90Sr and 241Am were employed as beta and alpha sources, respectively. The results obtained for electron irradiation showed that the same set of primary defects can be produced by beta irradiation from the Sr source as by electrons produced in an accelerator. Similarly, the defects produced by alpha irradiation from the Am source closely resemble those introduced by alpha irradiation in a Van de Graaff accelerator. It was found that the relative concentrations of the primary defects in electron-irradiated GaAs are different to those in alpha-particle irradiated GaAs. Further, for the first time, an alpha irradiation induced defect which seems to be related to the doping concentration was observed in the 1016/cm3 Si doped GaAs. It is concluded that the use of radionuclides is an inexpensive and convenient method to introduce and to study radiation induced defects in semiconductors.  相似文献   

5.
Magnetoplastic effect in irradiated NaCl and LiF crystals   总被引:2,自引:0,他引:2  
The effect of low x-ray irradiation doses (≈102 rad) on the magnetoplastic effect — the detachment of dislocations from paramagnetic centers under the action of an external magnetic field B — in alkali-halide crystals has been investigated. The measurements were performed on LiF crystals and three types of NaCl crystals, differing in impurity content. The dependence of the mean free path l of the dislocations on the rotational frequency ν of a sample in a magnetic field was especially sensitive to low irradiation doses. In unirradiated crystals this dependence is a single-step dependence and is characterized by a critical frequency ν cB 2 above which the magnetoplastic effect is not observed. The frequency ν c depends only on the type of paramagnetic centers, and not on their density. Even the lowest irradiation dose employed (<100 rad) leads to a sharp restructuring of the dependence l(ν), converting it into a two-step dependence (for edge dislocations) with an additional critical frequency ν c2, that is insensitive to the irradiation dose, and that corresponds to the appearance of magnetically sensitive stoppers of a new type under irradiation. The initial critical frequency ν c1, as a rule, also varies with the dose, reflecting the change in state of the impurity complexes (Ca in NaCl and Mg in LiF). Specifically, it is shown for NaCl(Ca) crystals that as the irradiation dose increases, the frequency ν c1 increases, gradually approaching the value ν c2, so that by the time the dose is ≈300 rad, the dependence l(ν) once again becomes a single-step dependence, dropping sharply only for νν c2. It is shown that the addition of a small number of Ni atoms to a NaCl crystal makes the Ca complexes radiation resistant, and the critical frequency ν c1 corresponding to them initially equals ν c2 for crystals with no Ni. The recombination kinetics of radiation defects in the case in which the samples are irradiated under a tungsten lamp was investigated. A possible physical model of the observed dependences is discussed. Zh. éksp. Teor. Fiz. 111, 615–626 (February 1997)  相似文献   

6.
The temperature dependences of the electrical conductivity and the permittivity of TlInSe2 and TlGaTe2 crystals unirradiated and irradiated with 4-MeV electrons at a doze of 1016 cm−2 have been investigated. It has been established that electron irradiation leads to a decrease in the electrical conductivity σ and the permittivity ɛ over the entire temperature range under study (90–320 K). It has been revealed that the TlInSe2 and TlGaTe2 single crystals undergo a sequence of phase transitions characteristic of crystals of this type, which manifest themselves as anomalies in the temperature dependences σ = f(T) and ɛ = f(T). Electron irradiation at a doze of 1016 cm−2 does not affect the phase transition temperatures of the crystals under investigation.  相似文献   

7.
Voids in high purity aluminum irradiated to a fast (E>1 MeV) fluence of 4 × 1020 n/cm2 at 125 (0.43T m) and 150°C (0.45T m) are fewer in number but very much larger in size than those in material irradiated at 55°C (0.35T m). Additionally, at 125 and 150°C, the voids adopt a variety of shapes including plates, ribbons, cylinders and more equiaxed polyhedra, and are frequently associated with particles of transmutation-produced silicon. At the higher temperatures voids are larger near grain boundaries than in grain interiors. Injection of hydrogen or helium prior to irradiation causes an increase in the number of voids and a corresponding decrease in size in specimens irradiated at 150°C; 3 at. ppm He is more effective than either 3 or 9 at. ppm H. The gases do not appear to influence swelling.

A commercial purity (99 per cent) aluminum subjected to the same irradiation treatments did not develop voids whether preinjected with gases or not; the visible radiation damage consisted solely of small loops on or near grown-in dislocations.  相似文献   

8.
Summary Pellets of sintered YBa2Cu3O7−δ with three different oxygen contents have been irradiated with fast neutron beams of energies 6.5, 3.3 and 4.4 MeV at fluences of 7.7·104, 1.3·105 and 1.4·109 n/cm2, respectively. The radiation damage has been investigated by comparing the critical temperature (T c mid ), the zero resistivity and the onset temperature before and after neutron irradiation. The critical current has been measured for a few samples in the same experimental conditions. In all transport measurements two different responses to the neutron radiation are observed and discussed.  相似文献   

9.
Y2O3:Eu3+ phosphor is a very attractive material for use as a red phosphor in many fields. SrAl2O4:Eu2+ belongs to long lasting phosphor (LLP) and it is a useful bluish-green luminescence material, which can also be a promising candidate as a simple and easy-to-use radiation detection element for visual display of two dimensional radiation distributions. In the present study, both these two kinds of phosphors were synthesized using high temperature solid state reactions. In our work, the influence of gamma-ray irradiation on the properties of these two kinds of phosphors was studied by comparing photoluminescence, brightness and the decay curve of unirradiated and gamma-ray-irradiated samples. Conclusions from the present work can be briefly summarized as follows. In irradiated samples, the brightness is decreased without sensible change in the wavelength distribution of the luminescence spectrum and in the decay kinetic upon gamma exposure. Moreover, the emission due to Eu3+→Eu2+ conversion in Y2O3:Eu3+ phosphors was not observed in our sample after irradiation to high exposure. Also the brightness of SrAl2O4:Eu2+ phosphor turned out to decrease after the exposition to ionizing radiation while the luminescence wavelength distribution remained unchanged. The reason for the effect of gamma-ray irradiation on the properties of phosphors is also discussed in the paper.  相似文献   

10.
Summary In order to clarify the effect of 13 GHz microwave irradiation upon model membranes, vibrational Raman spectroscopy was performed for multilamellar dispersions of dipalmitoylphosphatidylcholine, before and after irradiation. Raman spectra of the phospholipid dispersions were recorded for the C−H ((2800⊢3100)cm−1) and the C−C ((1050⊢1150)cm−1) stretching modes, above the transition temperatureT m of the phospholipid, before and after microwave irradiation. An intensity comparison between the irradiated and nonirradiated sample revealed an increase in the intensity ratioI 2930/I 2880 and a small perturbation in the C−C stretching region, induced by microwaves. It seems reasonable to assume that microwave irradiation brings about a change in lateral chain-chain interactions, which is possibly due to induced changes at bilayer curvature.  相似文献   

11.
The photoreduction processes stimulated either the cw (power density 105–106 W/cm2) or pulsed (pulse energy 3–4 J, pulse duration 200 ns, effective laser spot diameter 1 mm) radiation of a CO2 laser on the surfaces of fused and crystalline quartz, as well as of natural silicates (nepheline KNa3[AlSiO4]4, rhodonite CaMn4[Si5O15], and zircon ZrSiO4), are studied. The X-ray emission analysis of irradiated surfaces showed that the laser irradiation of these materials leads to the sublimation of silicon oxides and the enrichment of surfaces with constituent metal elements. Laser radiation also stimulates the formation of silicon and metal nanoclusters on irradiated surfaces. The appearance of these nanoclusters is confirmed by both photoluminescence and X-ray emission studies of irradiated surfaces.  相似文献   

12.
Tin dioxide nanoparticles and zinc oxide nanorods were synthesized chemically and thick film gas sensors on alumina substrates were fabricated of these materials. Morphology and crystallite size of synthesized powders were investigated by TEM. The fabricated sensors were irradiated with 100 MeV O7+ ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2. The X-ray diffraction analysis of the samples before and after ion bombardment was performed for structural characterization. The sensing response to ethanol before and after irradiation was carried out for each fabricated sensor. Investigation revealed that irradiated SnO2 based sensor’s response and response time increased significantly. Results show that ZnO based sensor exhibit strong resistance to damage caused by ion irradiation which might be due to defects annihilation.  相似文献   

13.
Current radiation dosimetry methods involve the release of trapped charge carriers in the form of electrons-holes pairs generated by irradiation exposure of the dosimetric materials. Thermal and optical stimulations of the irradiated material freed the trapped charges that eventually recombine with interband centers producing the emission of light. The integrated intensity of the emitted light is proportional to the radiation dose exposure. In this work, we present an UV radiation dosimetry technique based on the characteristic persistence luminescence (PLUM) 4f65d1→4f7 electronic transition of Eu2+ ions in SrAl2O4:Eu2+, Dy3+. The dose assessment is carried out by measuring the PLUM signal integrated during a certain time. The PLUM performance of SrAl2O4:Eu2+, Dy3+ phosphor exhibited a linear behavior for the first 50 s of UV irradiation. For higher UV time exposure the behavior is sublinear with no apparent saturation during a 10 min period. The PLUM dosimetry response was performed at 400 nm that corresponds to the main band component of the PLUM excitation spectrum in the 250-500 nm range. The main advantage of a dosimeter device based on the PLUM of SrAl2O4:Eu2+, Dy3+ is that neither thermal nor optical stimulation is required, avoiding the need of cumbersome electronic photo/thermal stimulation equipment. Due to the highly efficient 250-500 nm PLUM response of SrAl2O4:Eu2+, Dy3+, it could have potential application as UV radiation dosimeter in the UV range of grate human health concerns caused by UV solar radiation.  相似文献   

14.
Nanopowders of SrAl2O4 pure and doped with rare earths were prepared via a proteic sol-gel methodology. The prepared materials presented a single crystalline phase, confirmed by XRD measurements. AFM results indicate that the average particle size is about 53 nm for SrAl2O4 powders. The radioluminescence spectrum of SrAl2O4: Eu2+, Dy3+ is composed by two intense peaks around 520 and 570 nm followed by a weaker emission peaking at 615 nm. It was observed that the intensity of RL emission during irradiation with X-rays decreased as a function of the irradiation time, indicating the build up of radiation damage in the nanopowders. The irradiated samples exhibited a persistent radiation damage that changes the colour of the sample, and also influenced the reduction in the scintillation efficiency. The saturation level of SrAl2O4: Eu2+ is 96%, exhibiting good resistance to radiation damage.  相似文献   

15.
Information concerning the effect of irradiation on the optical properties of materials in the infrared, sub-mm-and mm-wavelength regions is of increasing importance in fusion plasma diagnostics. The radiation induced transmission loss of a number of materials has therefore been investigated at wavelengths in the ranges 200 nm to 40 μm and 0.23 to 2.0 mm. The samples were irradiated with doses of up to 1010 rad in a nuclear reactor. While germanium shows considerable transmission loss at doses as low as 106 rad, and the transmission of TPX decreases at 109 rad, other materials, e.g. fused quartz and possibly ZnSe, exhibit sufficient radiation hardness for use in fusion plasma diagnostics.  相似文献   

16.
Thermoluminescence properties of barium strontium mixed sulfate have been studied by irradiation with Argon ions. The sample was recrystallized by chemical co-precipitation techniques using H2SO4. The X-ray diffraction study of prepared sample suggests the orthorhombic structure with average grain size of 60 nm. The samples were irradiated with 1.2 MeV Argon ions at fluences varying between 1011 and 1015 ions/cm2. The argon ions penetrate to the depth of 1.89 μm and lose their energy mainly via electronic stopping. Due to ion irradiation, a large number of defects in the sample are formed. Thermally stimulated luminescence (TSL) glow curves of ion irradiated Ba0.12Sr0.88SO4 phosphor exhibit broad peak with maximum intensity at 495 K composed of four overlapping peaks. This indicates that different sets of traps are being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). Thermoluminescence (TL) glow curves were recorded for each of the ion fluences. A linear increase in intensity of TL glow peaks was found with the increase in ion dose from 59 kGy to 5.9 MGy. The kinetic parameters associated with the prominent glow peaks were calculated using glow curve deconvolution (GCD), different glow curve shape and sample heating rate methods.  相似文献   

17.
A comparative study of the effect of gamma and laser irradiation on the thermal, optical and structural properties of the CR-39 diglycol carbonate solid state nuclear track detector has been carried out. Samples from CR-39 polymer were classified into two main groups: the first group was irradiated by gamma rays with doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm2. Non-isothermal studies were carried out using thermogravimetry, differential thermogravimetry and differential thermal analysis to obtain activation energy of decomposition and transition temperatures for the non-irradiated and all irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. Variation in the onset temperature of decomposition T o, activation energy of decomposition E a, melting temperature T m, refractive index n and the mass fraction of the amorphous phase after gamma and laser irradiation were studied.

It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via degradation and cross-linking mechanisms. Also, the gamma dose has an advantage of increasing the correlation between thermal stability of the CR-39 polymer and bond formation created by the ionizing effect of gamma radiation. On the other hand, higher laser-energy fluences in the range 4.27–8.53 J/cm2 decrease the melting temperature of the CR-39 polymer and this is most suitable for applications requiring molding of the polymer at lower temperatures.  相似文献   

18.
Abstract

A field ion microscopy (FIM) and transmission electron microscopy (TEM) investigation of radiation damage in tungsten after heavy ion bombardment has been carried out. Field ion specimens of tungsten were irradiated with 180–230 keV Xe+ ions. The irradiation doses were varied between 4 × 1011 and 4 × 1012 ions/cm2. The irradiated specimens were examined in FIM. Experiments combining both TEM and FIM were performed in order to compare the results obtainable by these two methods. The distribution of defects visible by TEM was inhomogeneous. The influence of the imaging field in FIM on the defects visible in TEM is discussed.  相似文献   

19.
We have deposited c-axis oriented thin films of La1.5Dy0.5CaBa2Cu5Oz (La-2125) tetragonal superconductor on LaAlO3(001) substrates by pulsed laser deposition. These films were irradiated with 200 MeV Ag+15 ions. Atomic force microscopy and elastic recoil detection analysis indicate that the irradiation has created columnar defects through the entire thickness (2000 Å) of these films. With ion irradiation up to 1×1011 ions/cm2, the critical current density (Jc(H)) enhances by fivefold, which is attributed to the augmented flux pinning by the columnar defects. A further increase in irradiation to 1×1012 ions/cm2 causes reduction in Jc(H) due to distorted morphology of the film. Our work shows that the enhancement in Jc(H) of the irradiated La-2125 film is comparable to that in irradiated RE-123 (RE = rare earth ion). Also, as the La-2125 type films have greater chemical stability than RE-123, La-2125 type superconductors are potential candidates for applications. It is interesting to note that there are partial flux jumps observed to occur symmetrically in the magnetic hysteresis of irradiated La-2125 thin films with enhanced Jc(H).  相似文献   

20.
Light-induced reactions of poly-Cu with Cl2 and the formation of CuCl x films were studied in the spectral range of 105–400 nm by using synchrotron radiation. The efficiencies of the reactions with Cl2 pressures between 10–5 and 10–2 mbar were determined from the height distributions of spatial structures in the CuCl x films. The heights typically range from 10 to 104 nm. An efficiency of about 107 CuCl x molecules per dissociated Cl2 molecule is observed at high Cl2 exposures. At low Cl2 pressures CuCl x formes anisotropically in the irradiated area. The efficiency is determined by light-induced surface processes supporting the build up of CuCl x in the long wavelength range and competing processes at short wavelengths which reduce the efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号