首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we developed a fluorescence assay for the highly sensitive and selective detection of Hg2+ and Pb2+ ions using a gold nanoparticle (Au NP)-based probe. The Hg–Au and Pb–Au alloys that formed on the Au NP surfaces allowed the Au NPs to exhibit peroxidase-mimicking catalytic activity in the H2O2-mediated oxidation of Amplex UltraRed (AUR). The fluorescence of the AUR oxidation product increased upon increasing the concentration of either Hg2+ or Pb2+ ions. By controlling the pH values of 5 mM tris–acetate buffers at 7.0 and 9.0, this H2O2–AUR–Au NP probe detected Hg2+ and Pb2+ ions, respectively, both with limits of detection (signal-to-noise ratio: 3) of 4.0 nM. The fluorescence intensity of the AUR oxidation product was proportional to the concentrations of Hg2+ and Pb2+ ions over ranges 0.05–1 μM (R2 = 0.993) and 0.05–5 μM (R2 = 0.996), respectively. The H2O2–AUR–Au NP probe was highly selective for Hg2+ (>100-fold) and Pb2+ (>300-fold) ions in the presence of other tested metal ions. We validated the practicality of this simple, selective, and sensitive H2O2–AUR–Au NP probe through determination of the concentrations of Hg2+ and Pb2+ ions in a lake water sample and of Pb2+ ions in a blood sample. To the best of our knowledge, this system is the first example of Au NPs being used as enzyme-mimics for the fluorescence detection of Hg2+ and Pb2+ ions.  相似文献   

2.
A new surface based on poly(vinylferrocenium) (PVF+)-modified platinum electrode was developed for determination of Hg2+ ions in aqueous solutions. The polymer was electrodeposited on platinum electrode by constant potential electrolysis as PVF+ClO4. Cl ions were then attached to the polymer matrix by anion exchange and the modified electrode was dipped into Hg2+ solution. Hg2+ was preconcentrated at the polymer matrix by adsorption and also complexation reaction with Cl. Detection of Hg2+ was carried out by differential pulse anodic stripping voltammetry (DPASV) after reduction of Hg2+. Mercury ions as low as 5 × 10−10 M could be detected with the prepared electrode and the relative standard deviation was calculated as 6.35% at 1 × 10−6 M concentration (n = 6). Interferences of Ag+, Pb2+ and Fe3+ ions were also studied at two different concentration ratios with respect to Hg2+. The developed electrode was applied to the determination of Hg2+ in water samples.  相似文献   

3.
Diametrically disubstituted bis(anthrylmethyl) derivative of 1,8-dimethylcyclam exhibited pronounced Hg2+- and Cd2+-selective fluorogenic behaviors in aqueous acetonitrile solution. A distinctive OFF-ON type signaling was observed for Hg2+ and Cd2+ ions in aqueous acetonitrile (CH3CN-H2O = 90:10, v/v) solution, while a selective ON-OFF type switching behavior toward Hg2+ ions was observed in solution having higher water content (CH3CN-H2O = 50:50, v/v). The detection limit for the analysis of Hg2+ ions in 50% aqueous acetonitrile was found to be 3.8 × 10−6 M. The selective OR logic gate behavior of the prepared compound toward two toxic heavy metal ions of Hg2+ and Cd2+ ions in CH3CN-H2O (90:10, v/v) suggests the possibility as a new chemosensing device for the two important target metal ions.  相似文献   

4.
Lin YW  Liu CW  Chang HT 《Talanta》2011,84(2):324-329
We have developed a fluorescence technique for the detection of Hg2+ and Pb2+ ions using polythymine (T33)/benzothiazolium-4-quinolinium dimer derivative (TOTO-3) and polyguanine (G33)/terbium ions (Tb3+) conjugates, respectively. Hg2+ ions induce T33 to form folded structures, leading to increased fluorescence of the T33/TOTO-3 conjugates. Because Pb2+ ions compete with Tb3+ ions to form complexes with G33, the extent of formation of the G33-Tb3+ complexes decreases upon increasing the Pb2+ concentration, leading to decreased fluorescence at 545 nm when excited at 290 nm. To minimize interference from Hg2+ ions during the detection of Pb2+ ions, we conducted two-step fluorescence measurements; prior to addition of the G33/Tb3+ probe, we recorded the fluorescence of a mixture of the T33/TOTO-3 conjugates and Hg2+ ions. The fluorescence signal obtained was linear with respect to the Hg2+ concentration over the range 25.0-500 nM (R2 = 0.99); for Pb2+ ions, it was linear over the range 3.0-50 nM (R2 = 0.98). The limits of detection (at a signal-to-noise ratio of 3) for Hg2+ and Pb2+ ions were 10.0 and 1.0 nM, respectively. Relative to other techniques for the detection of Hg2+ and Pb2+ ions in soil and water samples, our present approach is simpler, faster, and more cost-effective.  相似文献   

5.
A highly selective mercury electrode based on a diamine donor ligand   总被引:1,自引:0,他引:1  
Gupta VK  Chandra S  Lang H 《Talanta》2005,66(3):575-580
(H2NCHMeCH2NH2)(H2O)2HgCl2 (I) was synthesised, characterised and used for the fabrication of a potentiometric sensor for Hg2+ metal ions. Membrane having I as electroactive material, sodium tetraphenyl borate (NaTPB) as an anion excluder, dibutylamine (DBA) as plasticizer in PVC matrix in the percentage ratio of 10:3:150:150 (I:NaTPB:DBA:PVC) (w/w) exhibits a linear response to Hg2+ ions in a concentration range of 1.25 × 10−5 to 1.0 × 10−1 M having a detection limit of 8.9 × 10−6 with a slope of 25 ± 0.1 mV over the pH range 6.6-9.3. Selectivity coefficients for Hg(II) relative to a number of interfering ions were investigated. The electrode is highly selective for Hg2+ ions over a large number of mono-, bi-, and trivalent cations. Normal interferents like Ag+ and Cd2+ do not interfere in the working of the electrode. The electrode has also been used successfully in mixtures having a 10% (v/v) methanol and acetone content without showing any considerable change in working concentration range or slope. These electrodes have been found to be chemically inert showing a fast response time of 10 s and were used over a period of 4 months with good reproducibility (s = ±0.2). The electrode was used for determination of mercury in binary mixtures with 100% recovery and thus the proposed sensor can be used for real sample analysis.  相似文献   

6.
Guha S  Lohar S  Hauli I  Mukhopadhyay SK  Das D 《Talanta》2011,85(3):1658-1664
An efficient Hg2+ selective fluorescent probe (vanillin azo coumarin, VAC) was synthesized by blending vanillin with coumarin. VAC and its Hg2+ complex were well characterized by different spectroscopic techniques like 1H NMR, QTOF-MS ES+, FTIR and elemental analysis as well. VAC could detect up to 1.25 μM Hg2+ in aqueous methanol solution through fluorescence enhancement. The method was linear up to 16 μM of Hg2+. Negative interferences from Cu2+, Ni2+, Fe3+, and Zn2+ were eliminated using EDTA as a masking agent. VAC showed a strong binding to Hg2+ ion as evident from its binding constant value (2.2 × 105), estimated using Benesi-Hildebrand equation. Mercuration assisted restricted rotation of the vanillin moiety and inhibited photoinduced electron transfer from the O, N-donor sites to the coumarin unit are responsible for the enhancement of fluorescence upon mercuration of VAC. VAC was used for imaging the accumulation of Hg2+ ions in Candida albicans cells.  相似文献   

7.
A new indole-based fluorescent chemosensor 1 was prepared and its metal ion sensing properties were investigated. It exhibits high sensitivity and selectivity toward Hg2+ among a series of metal ions in H2O-EtOH (7:1, v/v). The association constant of the 1:1 complex formation for 1-Hg2+ was calculated to be 9.57 × 103 M−1, and the detection limit for Hg2+ was found to be 2.25 × 10−5 M. Computational results revealed that 1 and Hg2+ ion formed with a central tetrahedron-coordinated Hg2+.  相似文献   

8.
A new pyrene-containing fluorescent sensor has been synthesized from 2,3,3-trimethylindolenine. Spectroscopic and photophysical properties of sensor are presented. The large change in fluorescence intensity (I/I0 = 0.13) at 381 nm and affinity to Hg2+ over other cations such as K+, Na+, Ca2+, Mg2+, Pb2+, and Cu2+ make this compound a useful chemosensor for Hg2+ detection in hydrophilic media. The sensor (6.0 × 10−6 M) displays significant fluorescence quenching upon addition of Hg2+ in pH 7.4 HEPES buffer without excimer formation. Job’s plot analysis shows the binding stoichiometry to be 2:1 (host/guest).  相似文献   

9.
A novel fluorogenic calix[4]arene dansylcarboxamide in the cone conformation has been synthesized as the disodium salt and employed in optical recognition of mercury(II). In extraction from aqueous solutions with high content of competing Na+ (CNa+ ∼0.1 M; pH 5.0, acetate buffer) into CHCl3, the fluoroionophore allowed for detection of 8.0 × 10−7 M Hg2+ (1:1 complex; ) with high selectivity over many other relevant metal ions.  相似文献   

10.
Shi L  Song W  Li Y  Li DW  Swanick KN  Ding Z  Long YT 《Talanta》2011,84(3):900-904
A new sensing molecule 8-hydroxyquinoline ferrocenoate (Fc-Q) which combines ferrocene and 8-hydroxyquinoline moieties was synthesized and applied as a multi-channel sensor for the detection of Hg2+ ion. Fc-Q can coordinate with Hg2+ to give colorimetric, fluorescent and electrochemical responses. Upon complexation with Hg2+ ion, the characteristic absorption peak is red-shifted (Δλ = 45 nm), the fluorescent intensity is quenched at 303 nm, and the oxidation peak is cathodic shifted (ΔE1/2 = −149 mV). Quantitatively analyzed Hg2+ ions at the range of ppb level could be achieved by electrochemical response. For the practical application of sensing Hg2+ in real world water, Fc-Q modified screen-printed carbon electrodes were obtained for facile, sensitive, and on-site analysis of Hg2+.  相似文献   

11.
A new resonance light scattering (RLS) spectrometric method for mercury ions (Hg2+) in aqueous solutions with sulfur ion (S2−) modified gold nanoparticles (Au-NPs-S) has been developed in this contribution. It was found that S2− at the surface of Au-NPs resulting from the surface modification can interact with Hg2+ to form very stable S-Hg-S bonds when Hg2+ concentration is lower than that of S2−, resulting in the aggregation of Au-NPs-S and causing enhanced RLS signals. The enhanced RLS intensities (ΔIRLS) characterized at 392 nm were found to be proportional to the concentration of Hg2+ in the range of 0.025-0.25 μmol L−1 with a detection limit (3σ) of 0.013 μmol L−1. Our results showed that this approach has excellent selectivity for Hg2+ over other substances in aqueous solutions.  相似文献   

12.
Naphthalimide derivative (compound 1) containing hydrophilic hexanoic acid group was synthesized and used to recognize Hg2+ in aqueous solution. The fluorescence enhancement of 1 is attributed to the formation of a complex between 1 and Hg2+ by 1:1 complex ratio (K = 2.08 × 105), which has been utilized as the basis of fabrication of the Hg2+-sensitive fluorescent chemosensor. The comparison of this method with some other fluorescence methods for the determination of Hg2+ indicated that the method can be applied in aqueous solution rather than organic solution. The analytical performance characteristics of the proposed Hg2+-sensitive chemosensor were investigated. The chemosensor can be applied to the quantification of Hg2+ with a linear range covering from 2.57 × 10−7 to 9.27 × 10−5 M and a detection limit of 4.93 × 10−8 M. The experiment results show that the response behavior of 1 toward Hg2+ is pH independent in medium condition (pH 4.0–8.0). Most importantly, the fluorescence changes of the chemosensor are remarkably specific for Hg2+ in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the response of the chemosensor toward Hg2+ is fast (response time less than 1 min). In addition, the chemosensor has been used for determination of Hg2+ in hair samples with satisfactory results, which further demonstrates its value of practical applications.  相似文献   

13.
We report the synthesis of a novel bistriazene, 4,4′-bis(3-(4-phenylthiazol-2-yl)triazenyl)biphenyl (BPTTBP), and its highly sensitive color reaction with Hg2+. The new reagent was synthesized in good yield by coupling 2-amino-4-phenylthiazole with 4,4′-biphenyldiamine bisdiazonium salt. Using a blend of surfactants N-cetylpyridinium chloride (CPC) and polyethylene glycol n-octanoic phenyl ether (OP) as a micelle sensitizer, the red colored reagent assembles with Hg2+ in pH 9.8 borate buffer according to a 1:1 stoichiometry, forming a blue oligomeric/polymeric chelating complex with a high apparent stability constant (1.1 × 108 M−1). Whereas the maximum absorption of reagent occurs at 510 nm with an extinct coefficient of 1.35 × 104 M−1 cm−1, the complex absorbs at 611 nm, with an apparent extinct coefficient of 1.04 × 105 M−1 cm−1. Beer's law is obeyed in the range of 0-15 μg/25 mL Hg2+, and Sandell's sensitivity is 1.92 × 10−3 μg/cm2. In the presence of thiourea and Na4P2O7 as masking agents, the method was found free from interferences of foreign ions commonly occurring with mercury. The optimized protocol has been successfully applied to spectrophotometric determination of mercury in waste water samples. The features of the new reagent associated with its special structure were discussed, and an unprecedented “domino effect” was proposed to account for its unique chelating stoichiometry with Hg2+.  相似文献   

14.
Singh LP  Bhatnagar JM 《Talanta》2004,64(2):313-319
Plasticized membranes using Schiff Base complexes, derived from 2,3-diaminopyridine and o-vanilin have been prepared and explored as Cu2+-selective sensors. Effect of various plasticizers viz., dibutyl phthalate (DBP), dioctylphthalate (DOP), chloronaphthalene (CN), tri-n-butylphosphate (TBP) etc. and anion excluder, sodium tetraphenylborate (NaTPB) was studied in detail and improved performance was observed at several instances. Optimum performance was observed with Schiff Base (B) having a membrane composition of B(1%):PVC(33%):DOP(65%):NaTPB(1%). The sensor works satisfactorily in the concentration range 5.0×10−6 to 1.0×10−1 M (detection limit 0.3 ppm) with a Nernstian slope of 29.6 mV per decade of activity. Wide pH range (1.9-5.2), fast response time (<30 s), high non-aqueous tolerance (up to 20%) and adequate shelf life (>4 months) indicate the vital utility of the proposed sensor. The potentiometric selectivity coefficient values as determined by match potential method (MPM) indicate good response for Cu2+ in presence of interfering ions. The tolerance level of Hg2+, which causes serious interference in the determination of Cu2+ ions (KCu2+Hg2+Pot(MPM): 0.45), was determined as a function of Cu2+ concentration in simulated mixtures. The sensor was also used in the potentiometric titration of Cu2+ with EDTA.  相似文献   

15.
A diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg2+, CH3Hg+, C2H5Hg+, and C6H5Hg+). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6 M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively. The extraction efficiency was higher than 95.0% (RSD 3.5%). The mercury species were separated with a mobile phase containing 6.2% methanol + 0.05% 2-mercaptoethanol + 0.02 M ammonium acetate with a stepwise increase of methanol content up to 80% in the 16th min on a Zorbax C18 reverse phase column. The LODs of DGT–MAE–LC–CV-AFS method were 38 ng L−1 for CH3Hg+, 13 ng L−1 for Hg2+, 34 ng L−1 for C2H5Hg+ and 30 ng L−1 for C6H5Hg+ for 24 h DGT accumulation at 25 °C.  相似文献   

16.
Ju Hee Kim 《Tetrahedron letters》2004,45(41):7557-7561
A new ionophore having two pyrenylacetamide moieties based on the p-tert-butylcalix[4]arene-diaza-crown ether has been prepared and its fluoroionophoric properties were investigated. Bis(pyrenyl) derivative was found to exhibit selective ON-OFF type sensing behavior toward Hg2+ ions over other representative transition and heavy metal ions. The fluorescence quenching efficiency of larger than 20-fold was observed with 100 equiv of Hg2+ ions and the association constant was found to be 4.5 × 104 M−1 in methanol. The ionophore also exhibited a very efficient quenching of excimer fluorescence selectively upon treatment with Hg2+ ions in 50% aqueous methanol solution. The observed Hg2+-selective ON-OFF type fluorescence behavior could be utilized as efficient sensing and switching devices for the design of other supramolecular systems.  相似文献   

17.
A new fluorescent chemosensor for Hg2+ based on a dansyl amide-armed calix[4]-aza-crown was reported. It exhibits high sensitivity and selectivity toward Hg2+ over a wide range of metal ions in MeCN-H2O (4:1, v/v). The association constant of the 1:1 complex formation for 2-Hg2+ was calculated to be 1.31 × 105 M−1, and the detection limit for Hg2+ was found to be 4.1 × 10−6 mol L−1.  相似文献   

18.
Herein, a novel sensitive pseudobienzyme electrocatalytic DNA biosensor was proposed for mercury ion (Hg2+) detection by using autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification. Thiol functionalized capture DNA was firstly immobilized on a nano-Au modified glass carbon electrode (GCE). In presence of Hg2+, the specific coordination between Hg2+ and T could result in the assembly of primer DNA on the electrode, which successfully triggered the HCR to form the hemin/G-quadruplex DNAzyme nanowires with substantial redox probe thionine (Thi). In the electrolyte of PBS containing NADH, the hemin/G-quadruplex nanowires firstly acted as an NADH oxidase to assist the concomitant formation of H2O2 in the presence of dissolved O2. Then, with the redox probe Thi as electron mediator, the hemin/G-quadruplex nanowires acted as an HRP-mimicking DNAzyme that quickly bioelectrocatalyzed the reduction of produced H2O2, which finally led to a dramatically amplified electrochemical signal. This method has demonstrated a high sensitivity of Hg2+ detection with the dynamic concentration range spanning from 1.0 ng L−1 to 10 mg L−1 Hg2+ and a detection limit of 0.5 ng L−1 (2.5 pM) at the 3Sblank level, and it also demonstrated excellent selectivity against other interferential metal ions.  相似文献   

19.
Liu Z  Huan S  Jiang J  Shen G  Yu R 《Talanta》2006,68(4):1120-1125
Molecular recognition sites for mercury ions were imprinted in TiO2 film using stable ground-state complex of 1-amino-8-naphtol-3,6-disodium sulfonate (ANDS) and mercury ions as template. The complex ratio between mercury ions and ANDS was estimated to be 2:1. Compared with the controlled and pure TiO2 electrodes, the imprinted electrode revealed selectivity towards the imprinted ions. Linear calibration plots for mercury ions were obtained and the regression equation was Ip (μA) = 4.29 × 10−7 + 19.40 [Hg2+] with a detection limit of 3.06 × 10−9 mol/l. The imprinted electrode could be used for more than 1 month. Recoveries were calculated at both high and low concentrations, with a mean recovery of 99.6%.  相似文献   

20.
In this study, a multiplex fluorescence sensor for successive detection of Fe3+, Cu2+ and Hg2+ ions based on “on–off” of fluorescence of a single type of gold nanoclusters (Au NCs) is described. Any of the Fe3+, Cu2+ and Hg2+ ions can cause quenching fluorescence of Au NCs, which established a sensitive sensor for detection of these ions respectively. With the introduction of ethylene diamine tetraacetic acid (EDTA) to the system of Au NCs and metal ions, a restoration of fluorescence may be found with the exception of Hg2+. A highly selective detection of Hg2+ ion is, thus, achieved by masking Fe3+ and Cu2+. On the other hand, the masking of Fe3+ and Cu2+ leads to the enhancement of fluorescence of Au NCs, which in turn provides an approach for successive determination of Fe3+ and Cu2+ based on “on–off” of fluorescence of Au NCs. Moreover, this assay was applied to the successful detection of Fe3+, Cu2+ and Hg2+ in fish, a good linear relationship was found between these metal ions and the degree of quenched fluorescent intensity. The dynamic ranges of Hg2+, Fe3+ and Cu2+ were 1.96 × 10−10–1.01 × 10−9, 1.28 × 10−7–1.27 × 10−6 and 1.2 × 10−7–1.2 × 10−6 M with high sensitivity (the limit of detection of Fe3+ 2.0 × 10−8 M, Cu2+ 1.9 × 10−8 M and Hg2+ 2 × 10−10 M). These results indicate that the assay is suitable for sensitive detection of these metal ions even under the coexistence, which can not only determine all three kinds of metal ions successively but also of detecting any or several kinds of metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号