首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extraction constant and the two-phase stability constant (KD,Mβ3) of tris(2-thenoyltrifluoroacetonato)europium(III) between 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][Tf2N]) as an ionic liquid and an aqueous phase were determined by considering the extraction equilibria including anionic tetrakis(2-thenoyltrifluoroacetonato)europate(III). Specific solute-solvent interactions between the neutral Eu(III) chelate and [C4mim][Tf2N] molecules were revealed from the relationships between the distribution constant of the enol form of 2-thenoyltrifluoroacetone (Htta) as a proton chelate and the distribution constant (KD,M) of the neutral Eu(III) chelate because the [C4mim][Tf2N] system gave the high KD,Mβ3 value compared with those in conventional molecular solvents such as benzene and 1,2-dichloroethane. The coordination environment of Eu3+ in the neutral Eu(III) chelate in [C4mim][Tf2N] was investigated by time-resolved laser-induced fluorescence spectroscopy and infrared absorption spectroscopy. Both methods consistently indicated that not only the Eu(III) chelate extracted but also Eu(tta)3(H2O)3 synthesized as a solid crystal were almost completely dehydrated in [C4mim][Tf2N] saturated with water. Consequently, the higher KD,M or extractability of the neutral Eu(III) chelate in the [C4mim][Tf2N] system can be ascribed to the dehydration of the Eu(III) chelate, which is caused by the specific solvation with [C4mim][Tf2N] molecules.  相似文献   

2.
Hirayama N  Deguchi M  Kawasumi H  Honjo T 《Talanta》2005,65(1):255-260
Possible use of room temperature ionic liquids (RTILs) as chelate extraction solvent was evaluated by using 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]) and 1-octyl-3-methylimidazolium hexafluorophosphate ([omim][PF6]). These RTILs showed high extraction performance for divalent metal cations with 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (Htta). The extracted metals were back-extracted into 1 mol dm−3 nitric acid quantitatively. Furthermore, the extracted species were estimated as neutral hydrated complexes M(tta)2(H2O)n (n= 1 or 2) for M = Ni, Cu and Pb and anionic complexes M(tta)3 for M = Mn, Co, Zn and Cd.  相似文献   

3.
Reduction by NaBH4 of the imine functions of (5,7,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)-nickel(II) and -copper(II), and of their 13-ethyl-5,7,7-trimethyl-homologues, yield the nitro-substituted cyclic tetraamine cations (5,5,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradecane)-nickel(II) and -copper(II), [M(neh)]2+, and (13-ethyl-5,5,7-trimethyl-homologues, [M(nph)]2+, respectively. The nickel(II) cations form square–planar, singlet ground, state salts with poorly coordinating anions and octahedral, triplet ground state, compounds with additional ligands, trans-β-[Ni(neh)A2], A = Cl, NCS and trans-β-[Ni(neh)A2](ClO4)2, X = NH3, MeCN, all with nitrogen configuration III, 1R,4R,8S,11S = β. With oxalate the chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) is formed. Folded macrocycle compounds cis-α-[Ni(neh)(C5H7O2)]ClO4 and cis-α-[{Ni(neh)}2(C2O4)](ClO4)2 are formed with the chelates acetylacetonate and oxalate, with configuration 1R,4R,8R,11R = α. These react with HClO4 to form metastable α-[Ni(neh)](ClO4)2 with retention of configuration. The copper(II) cations form crimson salts with poorly coordinating anions and compounds of the type β-[Cu(neh)A]ClO4 of varying shades of blue with coordinating anions. Structures of singlet ground state square–planar nickel(II) compounds β-[Ni(neh)](ClO4)2 · H2O, β-[Ni(neh)](ClO4)2, β-[Ni(neh)]2[ZnCl3(OH2)]2[ZnCl4] · H2O and α-[Ni(neh)](ClO4)2, the triplet ground state chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) and of square–pyramidal β-[Cu(nph)Cl]ClO4 are reported.  相似文献   

4.
Synthesis and structural characterization of nano crystallites of bis-violurate-based manganese(II) and copper(II) chelates is the subject of the present study. Analytical data and mass spectra as well as thermal analysis determined the molecular formulas of the present metal chelates. Spectroscopic and magnetic measurements assigned the structural formula of the present violurate metal complexes. The spectroscopic and magnetic investigations along with structural analysis results indicated the square planar geometry of both the Mn(II) and Cu(II) complexes. The structural analysis of the synthesized metal complexes was achieved by processing the PXRD data using specialized software Expo 2014. Spectrophotometeric and viscosity measurements showed that violuric acid and its Mn(II) and Cu(II) complexes successfully bind to DNA with intrinsic binding constants Kb from 38.2 × 105 to 26.4 × 106 M?1. The antiviral activity study displayed that the inhibitory concentrations (IC50) of SARS-CoV-2 by violuric acid and its Mn(II) and Cu(II) complexes are 84.01, 39.58 and 44.86 μM respectively. Molecular docking calculations were performed on the SARS-CoV-2 virus protein and the computed binding energy values are ?0.8, ?3.860 ?5.187 and ?4.790, kcal/mol for the native ligand, violuric acid and its Mn(II) and Cu(II) complexes respectively. Insights into the relationship between structures of the current compounds and their degree of reactivity are discussed.  相似文献   

5.
Summary Thermal analysis of resacetophenoneoxime and its chelates of Cu(II), Ni(II) and Pd(II) is carried out. A comparison is made between the thermal stability and the solution stability of chelates and found that they oppose each other. The thermal stability for the chelates studied is PdNi>Cu and the solution stability on the other hand is Pd>Cu>Ni. The results obtained were compared with the data available in the literature for structurally similar oximes. The advantages of the reagent for gravimetric and thermogravimetric analysis of metal ions were discussed.
Thermochemische Untersuchung der Cu(II)-, Ni(II)- und Pd(II)-Chelate von Resacetophenonoxim
Zusammenfassung Die thermische Stabilität der Chelate und ihre Stabilität in Lösung wurden verglichen und festgestellt, daß diese sich nicht entsprechen. Die erste nimmt ab in der Reihenfolge PdNi>Cu, die zweite in die Reihenfolge Pd>Cu>Ni. Die erhaltenen Ergebnisse wurden denen aus der Literatur für strukturell ähnliche Oxime gegenübergestellt. Die Vorteile des Reagenses für gravimetrische und thermogravimetrische Bestimmungen werden diskutiert.
  相似文献   

6.
The cobalt(II) and nickel(II) chelates of Schiff bases, derived by condensing 4-butyryl-3-methyl-1-phenyl-2-pyrazolin-5-one (BMPP) with o-, m-, p-phenylenediamine, benzidine, and ethylenediamine have been synthesized and characterized by elemental analyses, thermogravimetric analyses (TGA), conductance data, magnetic measurements, IR, 1H NMR, 13C NMR, mass, and electronic spectroscopies. Each of the Schiff bases was an ONNO donor to metal forming chelates formulated as [M(L)(H2O)2] n with M = Ni(II) and Co(II) and L is the di-anion of the Schiff base. The monomeric (n = 1) and dimeric (n = 2) species of these metal chelates, based on available evidence, are suggested.  相似文献   

7.
Poly (acrylamide-acrylic acid-dimethylaminoethylmethacrylate), p(AM-AA-DMAEM) and Poly(acrylamide-acrylic acid)-ethylenediaminetetracetic acid disodium, p(AM-AA)-EDTANa2 were prepared by gamma radiation-induced template polymerization technique and used for the separation of Ga (III) from Cu (II), Ni (II), and Zn (II) in aqueous media. The effect of pH and contact time on the separation process was studied. The optimum pH value for the separation process is 3–3.5. The result shows that Ga (III) is first extracted while Cu (II), Ni (II) and Zn(II) are slightly extracted at this pH value. The recovery of metals using HCl, HNO3 and H2SO4 has been studied. The resins may be regenerated using 2M HCl solutions.   相似文献   

8.
Complexes of general formula, [M(isa-sme)2] · n(solvate) [M = Ni2+, Cu2+, Zn2+, Cd2+; isa-sme = monoanionic form of the Schiff base formed by condensation of isatin with S-methyldithiocarbazate; n = 1 or 1.5; solvate = MeCN, DMSO, MeOH or H2O] have been synthesized and characterized by a variety of physicochemical techniques. An X-ray crystallographic structure determination of the [Ni(isa-sme)2] · MeCN complex reveals a six-coordinate, distorted octahedral geometry. The two uninegatively charged, tridentate, Schiff base ligands are coordinated to the nickel(II) ion meridionally via the amide O-atoms, the azomethine N-atoms and the thiolate S-atoms. By contrast, the crystal structure of [Zn(isa-sme)2] · MeOH shows a four-coordinate distorted tetrahedral geometry. The two dithiocarbazate ligands are coordinated as NS bidentate chelates with the amide O-atom not coordinated. The structure of the copper(II) complex [Cu(isa-sme)2] · DMSO is complicated and comprises two different complexes in the asymmetric unit, one four- and the other five-coordinate. The four-coordinate copper(II) has a distorted (flattened) tetrahedral geometry as seen in the Zn(II) analogue whereas the five-coordinate copper(II) has a distorted square-pyramidal geometry with one ligand coordinated to the copper(II) ion as a tridentate (NSO) ligand and the other coordinated as a bidentate NS chelate. EPR spectroscopy indicates that in solution only one form is present, that being a distorted tetrahedral complex.  相似文献   

9.
The reaction of [M(H2L)2] [M = Ni(II) Cu(II)] (K+H2L = N-(pyridine-4-carbonyl)-hydrazine carbodithioate) with excess of ethylenediamine (en) gave mixed ligand complexes [Ni(en)2(4-pytone)2] (4-pytone = 5-(4-pyridyl)-1,3,4-oxadiazole-2-thione), and [Cu(en)2](4-pytol)2·H2O (4-pytol = 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol). The metal complexes have been characterized with the aid of elemental analyses, IR, magnetic susceptibility and single crystal X-ray studies. Complexes (1) and (2) crystallize in monoclinic system, space group P1 21/n1 and C2/c, respectively. The ligand after cyclization is present in the deprotonated thiol form in the Cu(II) complex where it is ionically bonded through sulfur. In the Ni(II) complex (1) bonding of the ligand take place through oxadiazole nitrogen and the ligand exists as the thione form.  相似文献   

10.
The reaction products of five 2-hydroxyaryloximes with Ni(II), Pd(II), and Co(II) have been obtained and characterized by elemental analyses, conductometric measurements, magnetic moment determination, and spectroscopic methods (IR, 1H NMR, electronic absorption in solutions and in solid state). Cyclic voltammetry on mercury and carbon fibre electrodes has been employed to investigate the electrochemical behaviour in DMF solutions. The effect of substituents on the structure of the chelates and the electron distribution is assessed, discussed and compared with the behaviour of the corresponding copper(II) chelates. The structure of the title compound trans-bis(propanone, 1-[2-hydroxyphenyl]-oximato) nickel(II), Ni(C9H10NO2)2 was determined by X-ray diffraction monoclinic system (space group P21/n), a = 11.894, b = 5.126, c = 13.668 Å, b? = 103.72°, Z = 2. The structure was refined by full-matrix least squares to a conventional R = 0.03. Ni is on the equatorial plane and surrounded by two nitrogen and two oxygen at distances 1.884(3) Å and 1.825(2) Å, respectively.  相似文献   

11.
Crystals of the title compound, [(C6H6N4S2)(C4H5NO4)(H2O)Ni]·H2O, consist of the Ni(II) complex and lattice water. The Ni(II) complex adopts a distorted octahedral coordination geometry formed by an iminodiacetate anion (IDA), a diaminobithiazole (DABT) and a coordinated water molecule. A twisted configuration of DABT is the distinguishing feature in the complex, the dihedral angle between thiazole rings of DABT being 20.04(8)°. An aromatic stacking interaction occurs between thiazole rings from neighboring complex molecules, and is considered as the reason for the twisted configuration. The tridentate IDA dianion chelates to a Ni(II) atom in afacialconfiguration. A hydrogen bond network holds the complex molecules together to form a supramolecular structure.  相似文献   

12.
The reaction of aquo-ethanolic solutions of Co(II), Ni(II) and Cu(II) salts and ethanolic solution of capric acid hydrazide (L) yielded paramagnetic, high-spin bis- and tris(ligand) chelate complexes. The tris(ligand) complexes, [ML 3]X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], have an octahedral structure formed on account of the bidentate (NO) coordination of three neutral hydrazide molecules. In the bis(ligand) complexes,ML 2(NCS)2 [M=Co(II), Ni(II)] and CuL 2 X 2·nH2O (X=NO 3 , ClO 4 and 1/2SO 4 2– ), the oxoanions and NCS take also part in coordination. The complexes have been characterized by elemental analysis, IR spectra, magnetic measurements, molar conductivity and TG analysis.
Caprinsäurehydrazid-Komplexe von Co(II), Ni(II) und Cu(II)
Zusammenfassung Durch die Reaktion von wäßrig-ethanolischen Lösungen von Co(II)-, Ni(II)-und Cu(II)-Salzen mit einer ethanolischen Lösung von Caprinsäurehydrazid (L) wurden paramagnetische high-spin Bis- und Tris-Ligand-Chelatkomplexe erhalten. Tris-Ligand-Komplexe des Typs [ML 3 X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], die eine oktaedrische Struktur besitzen, entstehen durch die Koordination von drei neutralen zweizähnigen (NO)-Hydrazidmolekülen. Bei den Bis-Ligand-KomplexenML 2(NCS)2 [M=Co(II), Ni(II)], sowie bei den Bis-Ligand-Komplexen CuL 2 X 2·nH2O (X=NO 3 , ClO 4 , 1/2SO 4 2– ) nehmen bei der Koordination außer Hydrazid auch die Säurereste teil. Die Komplexe wurden durch Elementaranalyse, IR-Spektren, magnetische Messungen, molare Leitfähigkeit und TG-Analysen charakterisiert.
  相似文献   

13.
The ionization constant of p-(2-hydroxy-1-naphthylazo)benzene-sulphonate (Orange II) and the formation constants of the metal chelates of this reagent with Ni(II) and Cu(II) have been determined spectrophotometrically in aqueous solution at 25° and at an ionic strength of 0.10M. The ionization constant of orange II was found to be pKa=10.95. Formation of orange II chelates with Ni(II) and Cu(II) was pH dependent, and the optimum pH range of the Ni(II) Chelate was at pH 9.2-9.4, and Cu(II) chelate at 9.5-9.7, respectively. The mole ratio of orange II to both of metal ions was found to be 2 to 1 stoichiometry. The formation constants (logK) of the Ni(II) and Cu(II) chelates were 12.50 and 16.11, respectively. The molar extinction coefficients and the photometric sensitivities of these chelates were determined.  相似文献   

14.
New Co(II), Ni(II), and Cu(II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with salicylaldehyde. Their characterization was performed by elemental analysis, molar conductance, spectroscopic techniques (IR, diffuse reflectance and UV–Vis–NIR), magnetic moments, thermal analysis, and calorimetry (thermogravimetry/derivative thermogravimetry/differential scanning calorimetry), while their morphological and crystal systems were explained on the basis of powder X-ray diffraction results. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from azomethine group and thiazole ring and one O atom from phenolic group. The composition of the complexes was found to be of the [ML2]∙nH2O (M = Co, n = 1.5 (1); M = Ni, n = 1 (2); M = Cu, n = 4.5 (3)) type, having an octahedral geometry for the Co(II) and Ni(II) complexes and a tetragonally distorted octahedral geometry for the Cu(II) complex. The presence of lattice water molecules was confirmed by thermal analysis. XRD analysis evidenced the polycrystalline nature of the powders, with a monoclinic structure. The unit cell volume of the complexes was found to increase in the order of (2) < (1) < (3). SEM evidenced hard agglomerates with micrometric-range sizes for all the investigated samples (ligand and complexes). EDS analysis showed that the N:S and N:M atomic ratios were close to the theoretical ones (1.5 and 6.0, respectively). The geometric and electronic structures of the Schiff base ligand 4-((2-hydroxybenzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide (HL) was computationally investigated by the density functional theory (DFT) method. The predictive molecular properties of the chemical reactivity of the HL and Cu(II) complex were determined by a DFT calculation. The Schiff base and its metal complexes were tested against some bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The results indicated that the antibacterial activity of all metal complexes is better than that of the Schiff base.  相似文献   

15.
Syntheses of nickel(II) complexes of the tetraaza macrocycles 2,7-dichloro-1,3,6,8-tetraazacyclodecane (DCCD) and 2,8-dichloro-1,3,7,9-tetraazacyclododecane (DICD) and a copper(II) complex of 2,6,8,12,13,17-hexaazabicyclo[5.5.5]heptadecane (HBCH) are reported in the template condensation of trichloromethane with 1,2-diaminoethane or 1,3-diaminopropane. Formulation of the synthesized products [Ni(DCCD)(H2O)2]Cl2, [Ni(DICD)(H2O)2]Cl2?·?H2O, and [Cu3(HBCH)(H2O)6]Cl6, and the metal-free ligand hydrochloride HBCH?·?6HCl has been confirmed by elemental analyses, conductivity measurements, and spectral studies. Potentiometric studies of nickel(II) and copper(II) complexes of HBCH and structurally similar 2,5,8,10,13,16,17,20,23-nonaazabicyclo[7.7.7]tricosane (NACT, earlier derived from trichloromethane and diethylenetriamine) have also been performed in the structural support of HBCH. In 1?:?1, metal?:?HBCH solution, copper(II) is coordinated to four N-donors of two-HN(CH2)3NH– groups of the ligand in a non-planar tetraaza cavity. The equilibrium constant value (log?K?=?15.41) for the reaction Cu2+?+?A???CuA2+ (A?=?HBCH) is in favor of the cyclic structure of the ligand. A high value (log?K?=?23.27) for corresponding reaction in the NACT system is due to conformational change in the ligand, where copper(II) organizes the macrocycle to form a nearly planar cavity in which the cation fits well.  相似文献   

16.
A solid-phase absorbent obtained by the immobilization of Aliquat 336 chloride in poly(vinyl chloride) is reported to extract preferentially Co(II) from its 7 M hydrochloric acid solutions containing Ni(II). Under the experimental conditions there was no extraction of Ni(II) which allowed the complete separation of these two ions. Co(II) was rapidly and quantitatively back-extracted with deionised water. A mechanism for the extraction of Co(II) is proposed based on the formation of the ion-pair A+[HCoCl4] where A+ is the Aliquat 336 cation. Fe(III) and Cd(II), usually present in Co(II) and Ni(II) samples, were also extracted into the solid-phase absorbent though at a slower rate than Co(II) and they did not interfere with the separation of Co(II) from Ni(II). It was also demonstrated that this approach allowed the complete separation of Ni(II) from the other metal ions mentioned above.  相似文献   

17.
Four new complexes [Ni3(μ-L)6(H2O)6](NO3)6·6H2O (1), [Co3(μ-L)6(H2O)6](NO3)6·6H2O (2), [Ni3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (3), [Co3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (4) (L = 4-amino-3,5-dimethanyl-1,2,4-triazole) were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 and 2 are isomorphous; complex 3 and 4 are isomorphous. Four complexes all consist of the linear trinuclear cations ([M3(μ-L)6(H2O)6]6+ (M = Ni,Co) for 1 and 2; [M3(μ-L)6(H2O)4(CH3OH)2]6+ (M = Ni,Co) for 3 and 4), NO3 anions and crystallized water molecules. In the trinuclear cations, the central M(II) ions and two terminal M(II) ions are bridged by three triazole ligands. Other eleven solid solution compounds which are isomorphous with complex 3 and 4 were obtained by using different ratio of Ni(II) and Co(II) ions as reactants and ICP result indicates that ligand L has higher selectivity of Ni(II) ions than that of Co(II) ions. The magnetic analysis was carried out by using the isotropic spin Hamiltonian ? = −2J(?1?2 + ?2?3) (for complexes 1 and 3) and simultaneously considering the temperature dependent g factor (for complexes 2 and 4). Both the UV-Vis spectra and the magnetic properties of the solid solutions can be altered systematically by adjusting the Co(II)/Ni(II) ratio.  相似文献   

18.
Polymeric oxaaza macrocycles (PEI-OAM) are constructed on poly(ethylenimine) (PEI) by Ni(II)-template alkylation of PEI with diethyleneglycol ditosylate. The Kf values for Ni(II), Cu(II), and Zn(II) complexes of PEI–OAM are measured at pH 3.5–10 at 25°C. At pH 7, log Kf values for these complexes are 9–15, indicating that the polymeric oxaaza macrocycles can readily reduce concentrations of these metal ions below ppb level. Metal binding ability of nonpolymeric oxaaza macrocyclic compounds reported in the literature decreases rapidly as pH is lowered below 7, whereas that of PEI–OAM decreases to lesser extents. This is attributed to the electrostatic effects exerted by the ammonium ions of PEI backbone. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 527–532, 1997.  相似文献   

19.
Summary Mono(chelato)mono(alkoxo)nickel(II) complexes of the general formula, Ni(OR)(dk) (R = Me, i-Pr and dk = acac, bazac, dbzm and tta) have been synthesized by the reactions of nickel alkoxides, Ni(OR)2(R = Me and i-Pr) with acetylacetone (Hacac), benzoylacetone (Hbzac), dibenzoylmethane (Hdbzm) and 2-thienoyltrifluoroacetone (Htta). These derivatives interchange their alkoxy groups quantitatively with other alcohols. Molecular weight, i.r., electron spin resonance, electronic reflectance spectral and magnetic susceptibility studies have been carried out.Part. 1.Transition Met. Chem.,2, 204 (1977)  相似文献   

20.
As part of our on-going effort to develop 64Cu-based radiopharmaceuticals for PET (positron emission tomography) imaging of multidrug resistance in cancer, we prepared a tetramethylfuranone-functionalized diiminedioxime ligand, TMFPreH (TMFPreH = 4-[3-(4-hydroxyimino-2,2,5,5-dimethyl-dihydro-furan-3-ylideneamino)-propylimino]-2,2,5,5-tetramethyl-dihydrofuran-3(2H)-one oxime) and its Cu(II) and Ni(II) complexes. When the copper(II) complex was prepared from Cu(ClO4)2 in ethanol, it was isolated as a Cu(II)-bridged dimer, but when it was prepared from Cu(OAc)2 and heated in acetone, an unusual example of an acetone adduct of the ligand is formed by reduction of one of the imine double bonds by the solvent. The Ni(II) complex is square pyramidal with the perchlorate counterion at the apex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号