首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2-Alkoxyiminoimidazolidines 2-3 react with acetylene dicarboxylates and ethyl phenylpropiolate to give 8-alkoxy-imidazo[1,2-a]pyrimidin-5(3H)-ones C, which subsequently undergo a sterically induced multihetero-retro-ene fragmentation to give imidazo[1,2-a]pyrimidin-5(1H)-ones 4-7 together with formaldehyde or benzaldehyde. On the other hand, a similar reaction of 2-3 with ethyl propiolate gives corresponding 8-alkoxy-imidazo[1,2-a]pyrimidin-5(3H)-ones 8-10. The unsubstituted imidazo[1,2-a]pyrimidin-5(1H)-one 11 can be prepared by retro-ene reaction of 9 upon prolonged heating in refluxing ethanol. A direct synthetic approach to 1-formyl-7-phenyl-imidazo[1,2-a]pyrimidine-5(1H)-one 14 is reported using DMF/sulfonyl chloride as a new Vilsmeier-type N-formylating reagent.  相似文献   

2.
Kinetics of chemiluminescence reactions of 2-methyl-6-phenylimidazo[1,2-a]pyrazin-3(7H)-one (1c, Cypridina luciferin analogue) and substituent effects of the 6-aryl group of derivatives 1 strongly suggest that the rate-determining step is a single electron transfer from an anion derived from 1 to a triplet molecular oxygen (O2) in the oxygenation process.  相似文献   

3.
Sulfur-substituted quinolizidines and pyrido[1,2-a]azepines (7) can be prepared by ring-closing metathesis (RCM) of 4-(phenylthio)-1,2,5,6-tetrahydropyridin-2-ones (6) bearing terminal alkenyl groups at both N-1 and C-6 positions, which are obtained from 3-(phenylthio)-3-sulfolene (1) in four steps. Some synthetic transformations of 2-(phenylthio)-1,6,9,9a-tetrahydroquinolizin-4-one (7a) and 2-(phenylthio)-1,6,9,10,10a-pentahydropyrido[1,2-a]azepin-4-one (7d) are also reported.  相似文献   

4.
A series of (±)3-hydroxyl- and 2,3-dihydroxy-2,3-dihydro-7-oxopyrido[3,2,1-de]acridines were synthesized for antitumor evaluation. These agents can be considered as analogues of glyfoline or (±)1,2-dihydroxyacronycine derivatives. The key intermediates, 3,7-dioxopyrido[3,2,1-de]acridines (15a,b or 24a,b), for constructing the target compounds were synthesized either from 3-(N,N-diphenylamino)propionic acid (14a,b) by treating with Eaton’s reagent (P2O5/MsOH) (Method 1) or from (9-oxo-9H-acridin-10-yl)propionic acid (23a-c) via ring cyclization under the same reaction conditions (Method 2). Compounds 15a,b and 24a,b were converted into (±)3-hydroxy derivatives (25a-d), which were then further transformed into pyrido[3,2,1-de]acridin-7-one (28a-d) by treating with methanesulfonic anhydride in pyridine via dehydration. 1,2-Dihydroxylation of 28a-d afforded (±)cis-2,3-dihydroxy-7-oxopyrido[3,2,1-de]acridine (29a-d). Derivatives of (±)3-hydroxy (25a,b) and (±)cis-2,3-dihydroxy (29a-d) were further converted into their O-acetyl congeners 26a,b and 30a-d, respectively. We also synthesized 2,3-cyclic carbonate (31, 32, and 33) from 29a-c. The anti-proliferative study revealed that these agents exhibited low cytotoxicity in inhibiting human lymphoblastic leukemia CCRF-CEM cell growth in culture.  相似文献   

5.
Nehal M Elwan 《Tetrahedron》2004,60(5):1161-1166
Reaction of 2-cyanomethylbenzimidazole 1 with hydrazonoyl halides 2 led to formation of pyrrolo[1,2-a]benzimidazole derivatives 7. Similar reaction of 1 with halides 3 afforded 5-amino-4-(benzimidazol-2-yl)pyrazole derivatives 11 or 1-amino-2-arylpyrazolo[3,4:4′,3′]pyrrolo[1,2-a]benzimidazol-4-one 14 depending on the reaction conditions. The mechanisms of the studied reactions are discussed.  相似文献   

6.
Novel dipyrido[1,2-a;3′,4′-d]imidazoles 7a-d, dipyrido[1,2-a;4′,3′-d]imidazoles 8a,c and pyrido[1′,2′;1,2]imidazo[4,5-d]pyridazine derivatives 9a-d were synthesized by two pathways: thermal electrocyclic reaction of 3-alkenylimidazopyridine-2-oximes 10 and direct condensation of ethyl glycinate (or hydrazine) with 2,3-dicarbonylimidazo[1,2-a]pyridines 11.  相似文献   

7.
Jernej Wagger 《Tetrahedron》2008,64(12):2801-2815
A series of racemic and enantiopure (S,Z)-3-[(1H-indol-3-yl)methylidene]hexahydropyrrolo[1,2-a]pyrazin-4(1H)-one (cyclic Pro-ΔTrp) dipeptide analogues were prepared. Racemic analogues 6a-c were prepared by direct coupling of racemic cyclodipeptide enaminone (R,S)-5 with various indole derivatives. On the other hand, enantiopure analogues were prepared through a copper(I) catalyzed vinyl amidation reaction in which acyclic (S)-Pro-ΔTrp dipeptide analogues 20 and 21 were formed. Acyclic dipeptides were cyclized to enantiopure (S)-Pro-ΔTrp dipeptide analogues 24 and 25. For coupling reactions, vinyl bromides were prepared in several steps. From ethyl acetate (7), enaminone 8 was prepared and coupled with 2-methylindole and 2-phenylindole to give 9 and 10. Direct bromination of 3-(indole-3-yl)propenoates 9 and 10 at position 2 results in vinyl bromides 11 and 12. The Boc protecting group on the indole nitrogen 1′ in vinyl bromides 11 and 12 was introduced, before the copper(I) catalyzed coupling with N-Boc prolinamide 18 was performed. Enantiomeric purity of chiral intermediates and final products was determined mostly by HPLC or 1H NMR spectroscopy and X-ray diffraction.  相似文献   

8.
2-Substituted-4a-hydroxy-9H-cycloalkyl[1,2-e]oxazolo[3,2-a]pyrimidin-9-ones 2a-c were synthesized by an one-step cyclocondensation from the 5-substituted-2-amino-2-oxazolines 1a-c with ethyl 2-oxocyclohexanecarboxylate in ethanol at room temperature, and easily dehydrated to provide 2-substituted-9H-cycloalkyl[1,2-e]oxazolo[3,2-a]pyrimidin-9-ones 3. In refluxing xylene, the reaction conducted with various ethyl 2-oxocycloalkanecarboxylates led to the two isomeric 2-substituted-8/9H-cycloalkyl[1,2-e]oxazolo[3,2-a]pyrimidin-8/9-ones 3 and 2-substituted-5H-cycloalkyl[1,2-d]oxazolo[3,2-a]pyrimidin-5-ones 4. The structure of some compounds was unambiguously established using X-ray crystallography. According to results from the DSC analysis of compound 2a, formation of the thermodynamically stable pyrimidinones 4 could be related to an intramolecular rearrangement of kinetically controlled pyrimidinones 3.  相似文献   

9.
Treatment of 1,2,4-triazoles (1) with diethylmalonate in bromobenzene gave 1,2,4-triazolo-[1,5-a]pyridines 2. Chlorination of 2 using POCl3/DMF (Vilsmeier reagent) led to the isolation of 7-chloro-6-formyl-1,2,4-triazolo[1,5-a]pyridine derivative 4, which reacted with the stabilized ylid 5 to afford 6-ethoxycarbonylvinyl-1,2,4-triazolo[1,5-a]-pyridines 6. Azidation of 6 yielded the corresponding azido compound 7, (Scheme 2). Reduction of 7 with Na2S2O4 gave the corresponding 7-amino compound 8, which cyclized in boiling DMF to give the novel 1,2,4-triazolo[1,5-g][1,6]naphthyridines 9. On the other hand, reacting 7 with one equivalent of PPh3 (aza-Wittig reaction) in CH2Cl2 gave 7-imino-phosphorane derivative 10, and subsequent cyclization in boiling DMF afforded the new 1,2,4-triazolo[1,5-g][1,6]naphthyridine derivative 11 (Scheme 3). However, treatment of 10 with phenyl isothiocyanate in 1,2-dichlorobenzene at reflux temperature gave the new 1,2,4-triazolo[1,5-g][1,6]naphthyridine derivative 14 (Scheme 4). Refluxing 6 with excess of a primary amines 15a,b in absolute. EtOH yielded the corresponding 7-alkyl-amino-1,2,4-triazolo[1,5-a]pyridines 16a,b. These obtained amines 16a,b underwent intramolecular heterocyclization in boiling DMF to give the novel 9-alkyl-1,2,4-triazolo[1,5-g][1,6]-naphthyridines 17a,b, in excellent yields (Scheme 5).  相似文献   

10.
Novel 3-phenyl- and 3-(4-nitrophenyl)cyclohepta[4,5]imidazo[1,2-a]-1,3,5-triazine-2,4(3H)-diones and the corresponding imino derivatives 5a,b and 6a,b were synthesized in modest to moderate yields by the abnormal and normal aza-Wittig reaction of 2-(1,3-diazaazulen-2-ylimino)triphenylphosphorane with aryl isocyanates and subsequent heterocyclization reaction with a second isocyanate. The related cationic compound, 1-methyl-3-phenylcyclohepta[4,5]imidazo[1,2-a]-1,3,5-triazine-2,4(3H)-dionylium tetrafluoroborate 7a, was also prepared. The electrochemical reduction of these compounds exhibited more positive reduction potentials as compared with those of the related compounds of 3,10-disubstituted cyclohepta[4,5]pyrrolo[2,3-d]pyrimidine-2,4(1H,3H)-dione systems. In a search of the oxidizing ability, compounds 5a, 6a, and 7a were demonstrated to oxidize some amines to give the corresponding imines in more than 100% yield under aerobic and photo-irradiation conditions, while even benzylamine was not oxidized under aerobic and thermal conditions at 100 °C. The oxidation reactions by cation 7a are more efficient than that by 5a and 6a. Quenching of the fluorescence of 5a was observed, and thus, the oxidation reaction by 5a probably proceeds via electron-transfer from amine to the excited singlet state of 5a. In the case of cation 7a, the oxidation reaction is proposed to proceed via formation of an amine-adduct of 7a and subsequent photo-induced radical cleavage reaction.  相似文献   

11.
Ryota Saito  Ayako Ohno  Eri Ito 《Tetrahedron》2010,66(3):583-6715
As a chemiluminescent chemosensor that emits yellow light on reacting with a superoxide radical anion (O2) and has a lipophilic character, a 6-phenylimidazo[1,2-a]pyrazin-3(7H)-one derivative possessing a boradiazaindacene (BODIPY) at the para position of 6-phenyl (1) was synthesized. The lipophilicity of 1 was investigated by reversed-phase liquid chromatography, and its log Pow value was found to be 3.57. This value was much higher than that of 2-methyl-6-(4-methoxypheyl)imidazo[1,2-a]pyrazin-3(7H)-one (MCLA, log Pow=1.19) and 6-[4-[2-{N′-(5-fluoresceinyl)thioureido}ethoxy]phenyl]-2-methylimidazo[1,2-a]pyrazin-3(7H)-one (FCLA, log Pow=−0.08), and it was comparable to that of benzenoid hydrocarbons. The O2-induced chemiluminescence of 1 was investigated using the hypoxanthine/xanthine oxidase system as the source of O2, and as a result, yellow emission was observed. The maximum wavelength was observed at 542 nm, and it was longer than that of FCLA.  相似文献   

12.
Irene Ortín 《Tetrahedron》2010,66(45):8707-8713
Pyrazino[1,2-b]isoquinoline-1,4-diones (3) having a bulky activating group at the N(2)-position were rearranged to tetramic acids with a benzo[f]indolizine skeleton (8) in the presence of KtBuO or LHMDS as bases. This rearrangement was diasteroselective for the 6,11a-trans-isomers of the starting compounds. 1-Hydroxy-pyrazino[1,2-b]isoquinolin-4-one (7) afforded a 1-trichloroacetamido derivative (14) after treatment with trichloroacetonitrile and a catalytic amount of sodium hydride as a base, through two subsequent base-promoted transannular rearrangements. In summary, the combination of functions in the piperazine ring of the starting tricyclic compounds conferred to them new reactivities that imply different base-promoted transannular rearrangements and led to unexpected transformations.  相似文献   

13.
The synthesis of the biologically relevant, 4-trifluoromethylpyrido[1,2-a]pyrimidin-2-one 7, is reported. Addition of substituted 2-aminopyridines 5 to activated alkynoates leads to the facile formation of a series of metabolically stable trifluoromethyl substituted pyrido[1,2-a]pyrimidines under mild conditions.  相似文献   

14.
Through ring-closure reactions of N- or 1′-substituted 1-(2′-aminoethyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines (5a-e) with phenylphosphonyl dichloride, 1- or 3-substituted 4-phenyl-1,3,4,6,7,11b-tetrahydro-2H-1,3,2-diazaphosphorino[6,1-a]isoquinolin-4-one diastereomers (7a-e and 8a-c,e), the first representatives of a new ring system, were prepared. The diastereomeric ratios in the cyclizations and the conformer (A-E) populations of the nitrogen-bridged tricyclic systems (7 and 8) were strongly influenced by the N- and 1′-substituents of the starting diamines. The conformational analysis of compounds 7 and 8 was performed by 1H, 13C and 31P NMR methods.  相似文献   

15.
Three fluorescent quinazolines thiophen-2-yl-5,6-dihydrobenzo-[4,5]imidazo[1,2-c]quinazoline (1), pyridin-3-yl-5,6-dihydrobenzo-[4,5]imidazo-[1,2-c]quinazoline (2) and phenyl-5,5′,6,6′-dihydrobenzo-[4,4′,5,5′]imidazo-[1.1′,2-c,2′-c]quinazoline (3) have been synthesized. Structures of 1 and 3 have been authenticated crystallographically. Quinazolines 1-3 exhibit highly selective ‘on-off’ switching for Hg2+ ions. The fluorescence intensity displayed a linear relationship with respect to Hg2+ concentration (0.1-1.0 μM; R2 = 0.99) with detection limit of 2.0 × 10−7 M.  相似文献   

16.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

17.
Vegar Stockmann 《Tetrahedron》2008,64(32):7626-7632
Two new types of pyrido-fused tris-heterocycles (1a,b and 2a,b) have been prepared from 3-aminopyridine in five/six steps. A synthetic strategy for the preparation of the novel pyrido[3,4-b]thieno[2,3- and 3,2-d]pyrroles (1a,b) and pyrido[4,3-e]thieno[2,3- and 3,2-c]pyridazines (2a,b) has been studied. The Suzuki cross coupling of the appropriate 2- and 3-thienoboronic acids (3,4) and 4-bromo-3-pyridylpivaloylamide (9) afforded the biaryl coupling products (10,11) in high yields (85%). Diazotization of the hydrolysed (2-thienyl)-coupling product (12) and azide substitution gave the 3-azido-4-(2-thienyl)pyridine intermediate (72%, 14). 3-Azido-4-(3-thienyl)pyridine (15) was prepared by exchanging the previous order of reactions. The desired β-carboline thiophene analogues (1a,b) were obtained via the nitrene by thermal decomposition of the azido precursors (14,15). By optimising conditions for intramolecular diazocoupling, the corresponding pyridazine products (72-83%, 2a,b) were afforded.  相似文献   

18.
A straightforward synthesis of (2S)-[3,3-2H2]-proline 1c and (2S,3R)- and (2S,3S)-[3-2H1]-proline, 1b and 1a, respectively, has been devised. The key step of the route to the latter compounds involves highly stereoselective hydrolysis of the silyl enol ethers 3 and 3a, respectively, with protonation (deuteriation) from the re-face of the silyl enol ether.  相似文献   

19.
The electrochemical oxidation of catechols (1a-c) has been studied in the presence of 6-methyl-1,2,4-triazine-3-thion-5-one 3 in aqueous sodium acetate, using cyclic voltammetry and controlled-potential coulometry. A plausible mechanism for the oxidation of catechols and their reaction with 3 is presented. All the catechol derivatives (1a-c) were converted into 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives (6a-c) through a Michael-type addition reaction of 3 to anodically generated o-quinones. The electrochemical syntheses of 6a-c were successfully performed in one pot in an undivided cell using an environmentally friendly method with high atomic economy.  相似文献   

20.
Naturally occurring (1S,2R,3R,5R,7aR)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-hyacinthacine A6, 2] together with unnatural (1S,2R,3R,7aS)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine [(+)-7a-epi-hyacinthacine A1, 3] and (1S,2R,3R,5S,7aS)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-5,7a-diepi-hyacinthacine A6, 4] have been synthesized from a DALDP derivative [5, (2R,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine], as the homochiral starting material. The synthetic process employed took advantages of Wittig methodology followed by internal lactamization, in the case of (+)-7a-epi-hyacinthacine A1 (3), and reductive amination for (+)-hyacinthacine A6 (2) and (+)-5,7a-diepi-hyacinthacine A6 (4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号