首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study proposes a procedure for determining sodium, potassium, calcium and magnesium in biodiesel samples by flame atomic absorption spectrometry (F AAS). The sample was prepared as a microemulsion without surfactant. The optimized composition of the microemulsion was 10% (w/v) biodiesel, 75% (v/v) n-propanol, 1% (v/v) concentrated nitric acid and 14% (v/v) of aqueous solution formed by 0.2% (v/v) of nitric acid and 0.5% (v/v) of ionization suppressor. Analyte signals in the samples as microemulsion were found to be stable for a period of 15 days. Analytical curves were obtained using organometallic standard solutions. The limits of detection (LOD) found for the proposed procedure were 0.1 µg g− 1, 0.01 µg g− 1, 0.04 µg g− 1, and 0.004 µg g− 1 for Na, K, Ca and Mg, respectively. The reference method established by ABNT (Brazilian Association of Technical Norms) NBR 15556:2008 was used to verify the accuracy of the proposed procedure. No significant statistical difference was found between the results obtained with the proposed and the chosen reference procedure. The proposed procedure showed no matrix influence when recovery tests were performed (89%-103%). The results found in this study show that the proposed procedure is a good alternative for determining Na, K, Ca, and Mg by F AAS in biodiesel samples.  相似文献   

2.
A preconcentration method based on the adsorption of palladium-dimethylglyoxime (DMG) complex on silica gel for the determination of palladium at trace levels by atomic absorption spectrometry (AAS) has been developed. The retained palladium as Pd(DMG)2 complex was eluted with 1 mol l−1 HCl in acetone. The effect of some analytical parameters such as pH, amount of reagent and the sample volume on the recovery of palladium was examined in synthetic solutions containing street dust matrix. The influence of some matrix ions on the recovery of palladium was investigated by using the developed method when the elements were present both individually and together. The results showed that 2500 μg ml−1 Na+, K+, Mg2+, Al3+ and Fe3+; 5000 μg ml−1 Ca2+ ; 500 μg ml−1 Pb2+; 125 μg ml−1 Zn2+; 50 μg ml−1 Cu2+ and 25 μg ml−1 Ni2+ did not interfere with the palladium signal. At the optimum conditions determined experimentally, the recovery for palladium was found to be 95.3±1.2% at the 95% confidence level. The relative standard deviation and limit of detection (3s/b) of the method were found to be 1.7% and 1.2 μg l−1, respectively. In order to determine the adsorption behaviour of silica gel, the adsorption isotherm of palladium was studied and the binding equilibrium constant and adsorption capacity were calculated to be 0.38 l mg−1 and 4.06 mg g−1, respectively. The determination of palladium in various samples was performed by using both flame AAS and graphite furnace AAS. The proposed method was successfully applied for the determination of palladium in the street dust, anode slime, rock and catalytic converter samples.  相似文献   

3.
High-resolution continuum source molecular absorption of the calcium mono-fluoride molecule CaF in a graphite furnace has been used to determine fluorine in tea after acid digestion, alkaline solubilization and preparation of a conventional aqueous infusion. The strongest absorption ‘line’ of the CaF molecule is at 606.440 nm, which is part of the rotational fine structure of the X2Σ+ − A2Π electronic transition; it has a bond dissociation energy of 529 kJ mol−1, which is comparable with other molecules used for fluorine determination. One advantage of using Ca as the molecule-forming reagent is that spectral interferences are extremely unlikely in the spectral range of its strongest absorption. Another advantage is that Ca acts both as molecule forming reagent and chemical modifier, so that no other reagent has to be added, making the method very simple. The only disadvantage is that Ca has a somewhat negative influence on the graphite tube lifetime. The limit of detection was found to be 0.16 mg L−1 F, corresponding to 1.6 ng F absolute, and the calibration curve was linear in the range between 0.5 and 25 mg L−1 with a correlation coefficient of R = 0.9994. The results obtained for a certified tea reference material were in agreement with the certified value on a 95% confidence level. There was also no difference between the results obtained after an acid digestion and an alkaline solubilization for 10 tea samples, based on a paired t-test. The values found in the 10 samples ranged between 42 μg g−1 and 87 μg g−1 F; the tea infusions contained between 21 μg g−1 and 56 μg g−1 F, with an extraction rate between 48% and 74%.  相似文献   

4.
The determination of cadmium (Cd) in fertilizers is of major interest, as this element can cause growth problems in plants, and also affect animals and humans. High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with charge-coupled device (CCD) array detection overcomes several of the limitations encountered with conventional line source AAS, especially the problem of accurate background measurement and correction. In this work an analytical method has been developed to determine Cd in fertilizer samples by HR-CS GF AAS using slurry sampling. Both a mixture of 10 μg Pd + 6 μg Mg in solution and 400 μg of iridium as permanent modifier have been investigated and aqueous standards were used for calibration. Pyrolysis and atomization temperatures were 600 °C and 1600 °C for the Pd-Mg modifier, and 500 °C and 1600 °C for Ir, respectively. The results obtained for Cd in the certified reference material NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer) of 16.7 ± 1.3 μg g−1 and 16.4 ± 0.75 μg g−1 for the Pd-Mg and Ir modifier, respectively, were statistically not different from the certified value of 16.9 ± 0.2 μg g−1 on a 95% confidence level; however, the results obtained with the Ir modifier were significantly lower than those for the Pd-Mg modifier for most of the samples. The characteristic mass was 1.0 pg for the Pd-Mg modifier and 1.1 pg Cd for the Ir modifier, and the correlation coefficients (R2) of the calibration were > 0.99. The instrumental limits of detection were 7.5 and 7.9 ng g−1, and the limits of quantification were 25 and 27 ng g−1 for Pd-Mg and Ir, respectively, based on a sample mass of 5 mg. The cadmium concentration in the investigated samples was between 0.07 and 5.5 μg g−1 Cd, and hence below the maximum value of 20 μg g−1 Cd permitted by Brazilian legislation.  相似文献   

5.
Somer G  Unal U 《Talanta》2004,62(2):323-328
Using the DPP polarograms of wet digested cauliflower sample in acetate buffer at pH values of 2, 4 and 6, Fe, Zn, Mo, Se, Cr, Cd, Pb, Ti and Cu quantities were determined. The best separation and determination conditions for Zn, Se and Mo was pH 2; for Cr, Zn, Mo and As was pH 4; for Pb pH 6, for Ti, Cu and Fe was pH 6-7 EDTA, for Cd pH 2 EDTA and for lead pH 6, all in acetate buffer. The trace element ranges for cauliflowers from two different seasons were (first figure for winter, the second for summer) for Se 120-250 μg g−1, Fe 70-85 μg g−1, Cu 320-150 μg g−1, Ti 90-120 μg g−1, Cr 130-630 μg g−1, Zn 90-550 μg g−1, Mo 170-230 μg g−1, Cd 20 μg g−1 (in winter) and Pb 130-300 μg g−1 in dry sample. Cd was under the detection limit in summer. The length of digestion time had no effect on the recovery of copper, iron, molybdenum and zinc between 15 and 3 h of digestion.  相似文献   

6.
A simple and rapid method for the direct determination of Cd, Cr, Cu, Pb and Zn in soil was developed. The method was developed using three certified reference materials of soil: Eutric Cambisol, Orthic Luvisols and Rendzina, which differed in their matrix composition. Chemical modifiers were essential to achieve reproducible and interference-free signals for the analytes studied. The best results were obtained with a Pd/Mg(NO3)2 admixture for the determination of Cd, Pb and Zn and NH4F for Cu. The combination of W (as a permanent modifier) and Mg(NO3)2 provided well-defined signal profiles for Cr. The following spectral lines were used: Cd 228.8 nm, Cr 520.6 nm, Cu 218.2 nm, Pb 205.3 nm and Zn 307.6 nm. The limit of detection was 4.2 ng g− 1 for Cd, 1.1 μg g− 1 for Cr, 0.5 μg g− 1 for Cu, 1.3 μg g− 1 for Pb and 8.6 μg g− 1 for Zn for the maximum sample mass used. Under optimized conditions, the analyte and matrix were separated effectively in situ, and aqueous standards could be used for calibration.  相似文献   

7.
A new method was developed for simultaneous determination of trace arsenic and antimony in Chinese herbal medicines by hydride generation-double channel atomic fluorescence spectrometry with a Soxhlet extraction system and an n-octanol-water extraction system, respectively. The effects of analytical conditions on the fluorescence intensity were investigated and optimized. A water-dissolving and methanol-water-dissolving capability were compared. The contents of different species in five Chinese herbal medicines and their decoctions were analyzed. The concentration ratios of n-octanol-soluble As or Sb to water-soluble As or Sb were related to the kinds of medicine and the acidity of the decoction. Soxhlet extraction was found to be an effective method for plants pretreatment for determination of arsenic and antimony species in Chinese herbs; the interferences of coexisting ions were evaluated. The proposed method has the advantages of simple operation, high sensitivity and high speed, with 3σ detection limits of 0.094 μg g−1 for As(III), 0.056 μg g−1 for total As, 0.063 μg g−1 for Sb(III) and 0.019 μg g−1 for total Sb in a 1.0 g of the sample.  相似文献   

8.
A procedure for the extraction and determination of methyl mercury and mercury (II) in fish muscle tissues and sediment samples is presented. The procedure involves extraction with 5% (v/v) 2-mercaptoethanol, separation and determination of mercury species by HPLC-ICPMS using a Perkin-Elmer 3 μm C8 (33 mm × 3 mm) column and a mobile phase 3 containing 0.5% (v/v) 2-mercaptoethanol and 5% (v/v) CH3OH (pH 5.5) at a flow rate 1.5 ml min−1 and a temperature of 25 °C. Calibration curves for methyl mercury (I) and mercury (II) standards were linear in the range of 0-100 μg l−1 (r2 = 0.9990 and r2 = 0.9995 respectively). The lowest measurable mercury was 0.4 μg l−1 which corresponds to 0.01 μg g−1 in fish tissues and sediments. Methyl mercury concentrations measured in biological certified reference materials, NRCC DORM - 2 Dogfish muscle (4.4 ± 0.8 μg g−1), NRCC Dolt - 3 Dogfish liver (1.55 ± 0.09 μg g−1), NIST RM 50 Albacore Tuna (0.89 ± 0.08 μg g−1) and IRMM IMEP-20 Tuna fish (3.6 ± 0.6 μg g−1) were in agreement with the certified value (4.47 ± 0.32 μg g−1, 1.59 ± 0.12 μg g−1, 0.87 ± 0.03 μg g−1, 4.24 ± 0.27 μg g−1 respectively). For the sediment reference material ERM CC 580, a methyl mercury concentration of 0.070 ± 0.002 μg g−1 was measured which corresponds to an extraction efficiency of 92 ± 3% of certified values (0.076 ± 0.04 μg g−1) but within the range of published values (0.040-0.084 μg g−1; mean ± s.d.: 0.073 ± 0.05 μg g−1, n = 40) for this material. The extraction procedure for the fish tissues was also compared against an enzymatic extraction using Protease type XIV that has been previously published and similar results were obtained. The use of HPLC-HGAAS with a Phenomenox 5 μm Luna C18 (250 mm × 4.6 mm) column and a mobile phase containing 0.06 mol l−1 ammonium acetate (Merck Pty Limited, Australia) in 5% (v/v) methanol and 0.1% (w/v) l-cysteine at 25 °C was evaluated as a complementary alternative to HPLC-ICPMS for the measurement of mercury species in fish tissues. The lowest measurable mercury concentration was 2 μg l−1 and this corresponds to 0.1 μg g−1 in fish tissues. Analysis of enzymatic extracts analysed by HPLC-HGAAS and HPLC-ICPMS gave equivalent results.  相似文献   

9.
This paper reports the development of a new strategy for low-level determination of copper in water samples by using a flow-injection system coupled to solid-phase extraction (SPE) using flame atomic absorption spectrometry (F AAS) as detector. In order to preconcentrate copper from samples, a minicolumn packed with a styrene-divinylbenzene resin functionalized with (S)-2-[hydroxy-bis-(4-vinyl-phenyl)-methyl]-pyrrolidine-1-carboxylic acid ethyl ester was used and the synthesis procedure is described. System operation is based on the on-line retention of Cu(II) ions at pH 9.0 ± 0.2 in a such minicolumn with posterior analyte elution with 2 mol l−1 HCl directly to the F AAS nebulizer. The influence of several chemical (sample pH, buffer concentration, HCl eluent concentration and effect of the ionic strength) and flow (sample and eluent flow rates and preconcentration time) variables that could affect the performance of this system were investigated as well as the possible interferents. At optimized conditions, for 2 min of preconcentration time (13.2 ml of sample volume), the system achieved a detection limit of 1.1 μg l−1, a R.S.D. 1% at 20 μg g l−1 and an analytical throughput of 25 h−1, whereas for 4 min of preconcentration time (26.4 ml of sample volume), a detection limit of 0.93 μg l−1, a R.S.D. 5.3% at 5 μg l−1 and a sampling frequency of 13 h−1 were reported.  相似文献   

10.
The development of a slurry sampling method for the determination of calcium, copper, iron, magnesium and zinc in fish tissue samples by flame atomic absorption spectrometry is described. In comparison with microwave-assisted digestion, the proposed method is simple, requires short time and eliminates total sample dissolution before analysis. Suspension medium was optimized for each analyte to obtain quantitative recoveries from fish tissue samples without matrix interferences. Nevertheless, iron recoveries higher than 46% were not found. Treatment of samples slurried in nitric acid by microwave irradiation for 15-30 s at 75-285 W permitted to achieve efficient recoveries for calcium, iron, magnesium and zinc. Further improvement in the matrix effects for iron determination was accomplished by the use of an additional step of short microwave-assisted suspension treatment. However, standard addition method was required for calcium and copper determination, being necessary hydrochloric acid as suspension medium for the last one. Although copper could not be determined in the certified reference material using microwave-assisted digestion, the accuracy of the slurry sampling method was verified for all the investigated analytes. Detection limits were 22.8 ± 8.0, 0.884 ± 0.092, 5.07 ± 0.76, 35.5 ± 0.7 and 1.17 ± 0.04 μg g−1 for calcium, copper, iron, magnesium and zinc, respectively. The standard deviations obtained using slurry sampling method and microwave-assisted digestion were not significantly different, and the mean relative standard deviation of the over-all method (n = 3) of the slurry sampling method for different concentration levels was below 12%.  相似文献   

11.
In situ, real time levels of lead in road sediments have been measured using a man-portable laser-induced breakdown spectroscopy analyzer. The instrument consists of a backpack and a probe housing a Q-switched Nd:YAG laser head delivering 50 mJ per pulse at 1064 nm. Plasma emission was collected and transmitted via fiber optic to a compact cross Czerny-Turner spectrometer equipped with a linear CCD array allocated in the backpack together with a personal computer. The limit of detection (LOD) for lead and the precision measured in the laboratory were 190 μg g−1 (calculated by the 3σ method) and 9% R.S.D. (relative standard deviation), respectively. During the field campaign, averaged Pb concentration in the sediments were ranging from 480 μg g−1 to 660 μg g−1 depending on the inspected area, i.e. the entrance, the central part and the exit of the tunnel. These results were compared with those obtained with flame-atomic absorption spectrometry (flame-AAS). The relative error, expressed as [100(LIBS result − flame AAS result)/(LIBS result)], was approximately 14%.  相似文献   

12.
A simple method for the rapid and simultaneous analysis of dichlorvos (DDVP), malathion, carbaryl, and 2,4-dichlorophenoxy acetic acid (2,4-D) in citrus fruit, which uses flow-injection ion spray ionization tandem mass spectrometry, has been developed for the first time. The method involves the combined use of stable isotopically labeled internal standards (DDVP-d6, malathion-d10, carbaryl-d7, and 2,4-D-d5) and a multiple reaction monitoring technique. The average recoveries for the pesticides at the same concentrations as their tolerance levels (DDVP: 0.1-0.2 μg g−1; malathion: 0.5-4.0 μg g−1; carbaryl: 1.0 μg g−1; 2,4-D: 1.0-2.0 μg g−1) ranged from 90 to 119% with the relative standard deviation (R.S.D.) ranging from 1.0 to 13.1% (n = 5). Analysis time, including sample preparation and determination, was only 15 min. The present method is effective for screening DDVP, malathion, carbaryl, and 2,4-D in citrus fruit.  相似文献   

13.
A flow injection analysis (FIA) method using on-line separation and preconcentration with a novel metal scavenger beads, QuadraSil™ TA, has been developed for the ICP-OES determination of traces of palladium. QuadraSil TA contains diethylenetriamine as a functional group on spherical silica beads and shows the highest selectivity for Pd(II) at pH 1 (0.1 mol l−1 hydrochloric acid) solution. An aliquot of the sample solution prepared as 0.1 mol l−1 in hydrochloric acid was passed through the QuadraSil TA column. After washing the column with the carrier solution, the Pd(II) retained on the column was eluted with 0.05 mol l−1 thiourea solution and the eluate was directly introduced into an ICP-OES. The proposed method was successfully applied to the determination of traces of palladium in JSd-2 stream sediment certified reference material [0.019 ± 0.001 μg g−1 (n = 3); provisional value: 0.0212 μg g−1] and SRM 2556 used auto catalyst certified reference material [315 ± 4 μg g−1 (n = 4); certified value: 326 μg g−1]. The detection limit (3σ) of 0.28 ng ml−1 was obtained for 5 ml of sample solution. The sample throughputs for 5 ml and 100 μl of the sample solutions were 10 and 15 h−1, respectively.  相似文献   

14.
A method has been developed to determine acrylamide in aqueous matrices by using direct immersion solid-phase microextraction (SPME) coupled to gas chromatography-positive chemical ionization tandem mass spectrometry (GC-PCI-MS-MS) in the selected reaction monitoring (SRM) mode. The optimized SPME experimental procedures to extract acrylamide in water solutions were: use of a carbowax/divinylbenzene (CW/DVB)-coated fiber at pH 7, extraction time of 20 min and analyte desorption at 210 °C for 3 min. A detection limit of 0.1 μg L−1 was obtained. The linear range was 1-1000 μg L−1. The relative standard deviation was 10.64% (n = 7). The proposed analytical method was successfully used for the quantification of trace acrylamide in foodstuffs such as French fries (1.2 μg g−1) and potato crisps (2.2 μg g−1).  相似文献   

15.
Four simple, rapid, accurate, precise, reliable and economical spectrophotometric methods have been proposed for simultaneous determination of salbutamol sulphate (SS), bromhexine hydrochloride (BH) and etofylline (ET) in pure and commercial formulations without any prior separation or purification. They were first derivative zero crossing spectrophotometry (method 1), simultaneous equation method (method 2), derivative ratio spectra zero crossing method (method 3) and double divisor ratio spectra derivative method (method 4). The ranges for SS, BH and ET were found to be 1-35 μg mL−1, 4-40 μg mL−1 and 5-80 μg mL−1. For methods 1 and 2, the values of limit of detection (LOD) were 0.2314 μg mL−1, 0.4865 μg mL−1 and 0.2766 μg mL−1 and the values of limit of quantitation (LOQ) were 0.7712 μg mL−1, 1.6217 μg mL−1 and 0.9221 μg mL−1 for SS, BH and ET, respectively. For method 3, LOD values were 0.3297 μg mL−1, 0.2784 μg mL−1 and 0.7906 μg mL−1 and LOQ values were 0.9325 μg mL−1, 0.9282 μg mL−1 and 2.6352 μg mL−1 for SS, BH and ET, respectively. For method 4, LOD values were 0.3161 μg mL−1, 0.2495 μg mL−1 and 0.2064 μg mL−1 and LOQ values were 0.9869 μg mL−1, 0.8317 μg mL−1 and 0.6879 μg mL−1 for SS, BH and ET. The precision values were less then 2% R.S.D. for all four methods. The common excipients and additives did not interfere in their determinations. The results obtained by the proposed methods have been statistically compared by means of Student t-test and by the variance ratio F-test.  相似文献   

16.
This paper proposes a method for the determination of lead in aluminum and magnesium antacids employing electrothermal atomic absorption spectrometry (ET AAS). The pyrolysis and atomization temperatures established during the optimization step were 700 and 2200 °C, respectively, using phosphate as the chemical modifier. Under these conditions, a characteristic mass of 25 pg, and limits of detection and quantification of 0.40 and 1.35 μg L−1, respectively were obtained. Some experiments demonstrated that the calibration can be performed employing the external calibration technique using aqueous standards. The precision expressed as relative standard deviation (RSD %) was 4.03% for an antacid sample with lead concentrations of 284.5 μg L−1. The proposed method was applied for the determination of lead in five antacid samples acquired in Salvador City, Brazil. The lead content was varied from 87 to 943 μg g−1. The samples were also analyzed after complete dissolution by inductively coupled plasma mass spectrometry (ICP-MS). No statistical difference was observed between the results obtained by both of the procedures performed.  相似文献   

17.
A novel method for the non-derivatization liquid chromatographic determination of metals (potassium, aluminium, calcium and magnesium) and organic compounds (ascorbate and aspartate) was developed and validated based on evaporative light scattering detection (ELSD). Separation of calcium, magnesium and aluminium was achieved by the cation exchange column Dionex CS-14 and an aqueous TFA mobile phase according to the following time program: 0-6 min TFA 0.96 mL L−1, 6-7 min linear gradient from TFA 0.96-6.4 mL L−1. Separation of potassium, magnesium and aspartate was achieved by the lipophilic C18 Waters Spherisorb column and isocratic aqueous 0.2 mL L−1 TFA mobile phase. Separation of sodium, magnesium, ascorbate and citrate was also achieved by the C18 analytical column, according to the following elution program: 0-2.5 min aqueous nonafluoropentanoic acid (NFPA) 0.5 mL L−1; 2.5-3.5 min linear gradient from 0.5 mL L−1 NFPA to 1.0 mL L−1 TFA. In all cases, evaporation temperature was 70 °C, pressure of the nebulizing gas (nitrogen) 3.5 bar, gain 11 and the flow rate 1.0 mL min−1. Resolution among calcium and magnesium was 1.8, while for all other separations was ≥3.2. Double logarithmic calibration curves were obtained within various ranges from 3-24 to 34-132 μg mL−1, and with good correlation (r > 0.996). Asymmetry factor ranged from 0.9 to 1.9 and limit of detection from 1.3 (magnesium) to 17 μg mL−1 (ascorbate).The developed method was applied for the assay of potassium, magnesium, calcium, aluminium, aspartate and ascorbate in pharmaceuticals and food-supplements. The accuracy of the method was evaluated using spiked samples (%recovery 95-105%, %R.S.D. < 2) and the absence of constant or proportional errors was confirmed by dilution experiments.  相似文献   

18.
Potentiometric stripping analysis (PSA) was investigated to assay simultaneously cadmium, lead and thallium present as contaminants in highly saline solutions used in hemodialysis. The saline matrices were sodium, potassium, magnesium and calcium chlorides, sodium acetate, sodium bicarbonate and glucose, which constitute concentrates for hemodialysis. A 1000 μg mL−1 Hg(II) solution was used to prepare the mercury film electrode (MFE) and to carry out the stripping step. After a 30 s accumulation interval the analytes were simultaneously detected in the saline matrices without using masking agents. Determination limits of 80 ng L−1 for cadmium and thallium, and 50 ng L−1 for lead were calculated and a R.S.D. ranging from 0.5 to 2.2% (n = 3) was obtained measuring the analytes directly in commercial hemodialysis saline solutions. Recoveries from spiked samples ranging from 94.6 to 102.0% were obtained. The investigated metals were found in concentrations ranging from 2.7 to 5.7 μg L−1 for cadmium, 27.7 to 75.8 μ L−1 for lead and 9.6 to 18.7 μg L−1 for thallium in commercial hemodialysis solutions. The PSA method showed to be adequate to the quality control of saline concentrates for hemodialysis.  相似文献   

19.
Rohr U  Meckea L  Strubel C 《Talanta》2004,63(4):933-939
This paper describes an analytical method for the determination of reductive sulphur (S(IV), S(-II)) in glass. The glass sample is dissolved in hydrofluoric/hydrochloric acid mixture and the sulphur is separated via distillation in an apparatus made of polyfluoralkoxyethylene (PFA). The distilled hydrogen sulphide is trapped in buffered boric acid-zinc acetate solution and subsequently determined after conversion to an ethylene blue dye. The range of the method lies within a range of 2-1200 μg g−1 reductive sulphur. The quantification limit for reductive sulphur is 2 μg g−1.Different analysed glass types show either no detectable reductive sulphur or up to 30% of the total sulphur content reductive sulphur. The inter-laboratory standard deviation shown by a round robin test performed is excellent (±4 μg g−1; average 59 μg g−1). Sources of error of the methodology are discussed.  相似文献   

20.
Liu Y  Chang X  Wang S  Guo Y  Din B  Meng S 《Talanta》2004,64(1):160-166
A highly sensitive and selective solid-phase spectrophotometric method for the determination of sub-μg l−1 level nickel(II) is described. Nickel(II) was sorbed on a styrene-divinylbenzene-type resin Amberlite XAD-4 as a Ni(II)-o-carboxylphenyldiazoaminoazobenzene (o-CDAA) complex. At pH 9.0, resin phase absorbances at 588 and 800 nm were measured directly with an apparent molar absorptivity of 2.95×107 g mol−1 cm−1. The linear range of the determination was 1.2-41 μg g−1 resin. The detection limit and the quantification limit were found to be 0.24 and 0.76 μg g−1 resin, respectively. The relative standard deviation of 10 replicate determinations of 1.0 μg nickel(II) in 100 ml sample was of 1.5%. The tolerance limit of coexistent ions was also investigated. Most of them are in tolerable amount. For practical analyses, 1 ml acetylacetone used can eliminate the interferences caused by Cu and Fe. The procedure was validated by analysis a certified water reference material (GBW 08618 Beijing, China) and a tomato leaf certified reference material (GBW 08402 Beijing, China) with the results in agreement with the certified values. The method was applied to the determination of nickel(II) in water and vegetable samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号