首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In order to achieve an efficient synthesis of highly hydrophobic proteins by the native chemical ligation (NCL) reaction, we examined to incorporate the O-acyl isopeptide method, which is known to improve the solubility of the segment, to the NCL reaction: a peptide thioester having O-acyl isopeptide structures is prepared by the Boc mode solid-phase method using an azido group as a protecting group for the isopeptide site, and then ligated with C-terminal segment with an in situ reduction of the azido group followed by an O- to N-acyl shift. This method was successfully applied to the synthesis of the sphingolipid activator protein, saposin C.  相似文献   

2.
The NY-ESO-1 (A39-A68) peptide hydrazide was prepared through 9-fluorenyl-methoxycarbonyl solid-phase peptide synthesis (Fmoc SPPS) from a new 9-fluorenyl-methoxycarbonyl hydrazine 2-chlorotrityl chloride (Fmoc-hydrazine 2CTC) resin. The new resin was ideal for long-term storage and usage in Fmoc SPPS. Besides, the title peptide hydrazide could be transformed nearly quantitatively into the corresponding peptide thioester, which was both isolable and usable directly in native chemical ligation (NCL).  相似文献   

3.
Human adiponectin(19–107), which consists of the variable region and the collagenous domain bearing post-translational modifications including glycosylation, was chemically synthesized for the first time. A glycoside of 5-hydroxylysine (Hyl) was incorporated using an α-d-glucopyranosyl-(1→2)-β-d-galactopyranosyl/Hyl-Gly building block in a benzyl-protected form by solid-phase peptide synthesis (SPPS). The molecule was assembled from four segments prepared by SPPS via native chemical ligation (NCL) and thioester methods.  相似文献   

4.
We report that solid-phase hydrothiolysis is an efficient method to convert resin-bound peptide thioesters to thioacids in aqueous buffer by using a total PEG-based resin. Also demonstrated is the use of the so-prepared peptide thioacids in chemoselective amide bond formation reactions.  相似文献   

5.
The use of synthetic bridges as surrogates for disulfide bonds has emerged as a practical strategy to obviate the poor stability of some disulfide-containing peptides. However, peptides incorporating large-span synthetic bridges are still beyond the reach of existing methods. Herein, we report a native chemical ligation (NCL)-assisted diaminodiacid (DADA) strategy that enables the robust generation of disulfide surrogate peptides incorporating surrogate bridges up to 50 amino acids in length. This strategy provides access to some highly desirable but otherwise impossible-to-obtain disulfide surrogates of bioactive peptide. The bioactivities and structures of the synthetic disulfide surrogates were verified by voltage clamp assays, NMR, and X-ray crystallography; and stability studies established that the disulfide replacements effectively overcame the problems of disulfide reduction and scrambling that often plague these pharmacologically important peptides.  相似文献   

6.
A peptide containing a cysteinyl prolyl ester (CPE) moiety at the C-terminus (CPE peptide) is spontaneously transformed into a diketopiperazine thioester via an intramolecular N-S acyl shift reaction, followed by diketopiperazine formation. The CPE peptide can be ligated with a Cys-peptide in a one-pot procedure. The peptide diketopiperazine thioester can also be transformed into a peptide thioester by intermolecular thiol-thioester exchange with external thiol compounds such as sodium mercaptoethanesulfonate. Since CPE peptides can be prepared by standard Fmoc solid-phase synthesis, it is a versatile alternative to the peptide thioester, providing a flexible ligation strategy that promises to be useful in polypeptide synthesis.  相似文献   

7.
A new method for the preparation of peptide thioester by the post-solid phase peptide synthesis (SPPS) approach was developed. A series of N-alkyl cysteine derivatives were prepared and used as the C-terminus residue of the peptides prepared by the Fmoc SPPS. The synthetic peptides released from resin by TFA were readily converted to the peptide thioester in aqueous 3-mercaptopropionic acid (MPA) without significant side reactions.  相似文献   

8.
Ingale S  Buskas T  Boons GJ 《Organic letters》2006,8(25):5785-5788
Although native chemical ligation (NCL) is emerging as a powerful method for the assembly of (glyco)peptide building blocks, its applicability is reduced when peptide segments are poorly soluble in aqueous buffer. We have found that incorporating reactants in liposomes allows NCL of lipophilic peptides and lipopeptides. Furthermore, the reaction rates of liposome-mediated NCL are higher than traditional reaction conditions resulting in improved yields. [reaction: see text]  相似文献   

9.
A general procedure to prepare peptide thioacids by solid-phase peptide synthesis is presented. The method involves the synthesis of 4-[α-(S-acetyl)mercaptobenzyl]phenoxyacetic acid as general precursor. This reagent once attached to a solid support is derivatized with the Boc-amino acid of choice after deprotection of the thiol.  相似文献   

10.
Formation of peptide thioesters, based on an N to S acyl shift mediated by an auxiliary, N-4,5-dimethoxy-2-mercaptobenzyl (Dmmb) group, under acidic conditions, is described. The protected peptide was assembled on a hydroxymethylphenylacetamidomethyl resin via an N-Dmmb-amino acid residue according to standard Fmoc solid-phase peptide synthesis following treatment with trifluoroacetic acid. The peptide α-thioester was released from the resin by reaction with 2-mercaptoethanesulfonic acid in the presence of N,N-diisopropylethylamine.  相似文献   

11.
To expand the scope of native chemical ligation (NCL) beyond reactions at cysteine, ligation auxiliaries are appended to the peptide N-terminus. After the introduction of a pyridine-containing auxiliary, which provided access to challenging junctions (proline or β-branched amino acids), we herein probe the role of the pyridine-ring nitrogen. We observed side reactions leading to preliminary auxiliary loss. We describe a new easy to attach β-mercapto-β-(4-methoxy-2-pyridinyl)-ethyl (MMPyE) auxiliary, which 1) has increased stability; 2) enables NCL at sterically encumbered junctions (e. g., Leu-Val); and 3) allows removal under mildly basic (pH 8.5) conditions was introduced. The synthesis of a 120 aa long peptide containing eight MUC5AC tandem repeats via ligation of two 60mers demonstrates the usefulness. Making use of hitherto unexplored NCL to tyrosine, the MMPyE auxiliary provided access to a head-to-tail-cyclized 21-mer peptide and a His6-tagged hexaphosphorylated peptide comprising 6 heptapeptide repeats of the RNA polymerase II C-terminal domain.  相似文献   

12.
A strategy for the solid phase peptide synthesis (SPPS) and coupling of N-peptidyl and N-glycopeptidyl 2,4-dinitrobenzenesulfonamides (dNBS) with C-terminal peptidyl thioacids has been developed. The resulting N-dDNBS peptides were coupled to generate longer peptides. Ligation reactions were complete within 15 to 20 min.  相似文献   

13.
The reaction of oligosaccharide isonitriles with peptide thioacids in the presence of bulky thiophenol as activator to provide N-linked glycopeptides at room temperature is described.  相似文献   

14.
Subtiligase catalyzes the hydrolysis or the aminolysis of a peptide glycolate ester substrate via an acyl-enzyme thioester intermediate. We show that this intermediate can be intercepted by a hydrosulfide ion to generate a peptide thioacid as the hydrothiolysis product. Also shown is the use of the so-prepared peptide thioacids in mini thiol capture ligation.  相似文献   

15.
In the protein chemical synthesis via native chemical ligation (NCL) method with three peptide segments, the N-terminal cysteine residue of middle segment is generally protected by thiazolidine ring. In this paper, we show the novel method for thiazolidine ring opening using 2,2′-dipyridyl disulfide (DPDS). The N-terminal thiazolidine was converted into S-pyridylsulfenylated cysteine residue with DPDS under acidic conditions, and this N-terminally Cys peptide protected with disulfide was applicable to NCL reaction without purification and deprotection steps. DPDS treatment did not remove other Cys protecting groups generally used for regioselective disulfide bond formation reactions. These results indicate that this thiazolidine ring opening reaction is quite useful for the protein chemical synthesis with three-segment NCL strategy.  相似文献   

16.
TNFR1-associated death domain protein(TRADD)with arginine N-GlcNAcylation is a novel and structurally unique posttranslational modification(PTM)glycoprotein that blocks the formation of death-inducing signaling complex(DISC),orchestrating host nuclear factorκB(NF-κB)signaling in entero-pathogenic Escherichia coli(EPEC)-infected cells.This particular glycosylated modification plays an extremely vital role for the effective colonization and pathogenesis of pathogens in the gut.Herein we describe the total synthesis of TRADD death domain(residues 195-312)with arginine235 NGlcNAcylation(Arg-GIcNAc TRADD(195-312)).Two longish peptidyl fragments of the wild-type primary sequence were obtained by robust,microwave-assisted,highly efficient,solid-phase peptide synthesis(SPPS),the N-GlcNAcylated sector was built by total synthesis and attached specifically to resinbound peptide with an unprotected ornithine residue via silver-promoted on-resin guanidinylation,ArgGlcNAc TRADD(195-312)was constructed by hydrazide-based native chemical ligation(NCL).The facile synthetic strategy is expected to be generally applicable for the rapid synthesis of other proteins with Arg-GIcNAc modification and to pave the way for the related chemically biological study.  相似文献   

17.
We previously reported that the peptide containing a Cys-Pro ester (CPE) moiety is spontaneously transformed into a peptide thioester via an N to S acyl shift followed by diketopiperazine formation. In an attempt to identify more reactive structures for the formation of a peptide thioester, we modified the CPE structure, in which the Pro residue in the CPE moiety was replaced with N-substituted glycine derivatives. These peptides were transformed into a peptide thioester more rapidly. Alternatively, the addition of an amino acid residue at the C-terminus of the CPE moiety also accelerated thioester formation.  相似文献   

18.
Various bioactive proteins have been synthesized by native chemical ligation (NCL) and its combination with subsequent desulfurization (e.g., conversion from Cys to Ala). In NCL, excess 4‐mercaptophenylacetic acid (MPAA) is generally added to facilitate the reaction. However, co‐elution of MPAA with the ligation product during preparative high‐performance liquid chromatography sometimes reduces its usefulness. In addition, contamination of MPAA disturbs subsequent desulfurization. Here, we report for the first time that imidazole can be adopted as an alternative to MPAA in NCL using a peptide‐alkylthioester. The efficiency of the imidazole‐aided NCL (Im‐NCL) is similar to that of traditional MPAA‐aided NCL. As model cases, we successfully synthesized adiponectin(19‐107) and [Ser(PO3H2)65]‐ubiquitin using Im‐NCL with a one‐pot desulfurization.  相似文献   

19.
Hou W  Zhang X  Li F  Liu CF 《Organic letters》2011,13(3):386-389
With two β-mercaptoethyl groups on the N, a tertiary amide of structure 1 is always poised for intramolecular thioesterification however it flips about the C-N bond. It is shown that a peptide with such a C-terminal N,N-bis(2-mercaptoethyl)-amide (BMEA) can be used directly for native chemical ligation (NCL). These BMEA peptides are easily prepared with standard Fmoc-solid phase peptide synthesis protocols, thus giving a very convenient access to the thioester components for NCL.  相似文献   

20.
A general and robust method for the incorporation of aspartates with a thioacid side chain into peptides has been developed. Pseudoproline tripeptides served as building blocks for the efficient fluorenylmethyloxycarbonyl (Fmoc) solid-phase synthesis of thioacid-containing peptides. These peptides were readily converted to complex N-glycopeptides by using a fast and chemoselective one-pot deprotection/ligation procedure. Furthermore, a novel side reaction that can lead to site-selective peptide cleavage using thioacids (CUT) was discovered and studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号